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To my son Vanjul





Preface

Although the topology has originated in differentmanners, it is a good idea to learnmet-
ric space first and then topology. Therefore the present book is completely dedicated to
metric spaces and their topology. This subject is a necessity for manymathematical spe-
cialties and other fields. One is likely to approach the topic from their own perspective.

The present book is an outcome of my lecture notes, which were prepared to teach
topology at the Central University of Rajasthan, India. This book tries to answer the ques-
tions asked during the classroom teaching, either by me or by the students.

The book starts with a basic fundamental question: “What is a set?” Why an ax-
iomatic system is required. In the first chapter, the Zermelo–Freenkel axiomatic sys-
tem is discussed. The complete description of the various number systems has been dis-
cussed in the first chapter. The constructions of the real number systemwith the help of
Dedekind cuts and Cauchy sequences are discussed in the Chapters 1 and 5, respectively.

Chapter 2 starts with the definition of a metric space. In this chapter, various ex-
amples and properties of the metric spaces and normed spaces are discussed. Also, the
distances between the sets in metric spaces and the Gromov–Hausdorff distance are
discussed.

Chapter 3 is devoted tomaps betweenmetric spaces. The first section discusses con-
tinuous maps and their properties. The second section discusses homeomorphisms and
their properties. The third section discusses equivalentmetrics. The notions of Lipschitz
equivalent and topological equivalent metrics are discussed. In the fourth section the
isometry between metric spaces is discussed. The fifth section discusses the finite met-
ric spaces and their embedding in Euclidean spaces.

In Chapter 4, metrics on the product and quotient sets are discussed. Again, the
metric-preserving maps are discussed in this setting.

Chapter 5 is devoted to sequences in metric spaces. The first section deals with con-
vergent sequences and their properties. The second section discusses complete metric
spaces and their properties. In the fifth section the completion of a metric space is dis-
cussed. In the fourth section the real number system is obtained via the completion of
the rationals, which is an incompletemetric space. In the fifth section, the Baire category
theorem and its applications are discussed.

Chapter 6 is devoted to compactmetric spaces. The first section discusses their prop-
erties. In the second section, some equivalence of compactness is discussed. In the third
section the Hilbert cube is discussed, and it is proved that a compact metric space can
be embedded in the Hilbert cube as a closed set. The fourth section discusses the Cantor
set, and it is shown that a compact metric space is a continuous image of the Cantor set.

The last chapter is about connected metric spaces. Various properties of connected
spaces are discussed in the first and second sections. The last section discusses the path-
connected metric spaces.

A book cannot be completed without the help of others. First of all, I am thankful
to my teachers, Prof. Ramji Lal (retired) and Prof. R. P. Shukla, University of Allahabad,

https://doi.org/10.1515/9783111636085-201



VIII � Preface

Prayagraj, for their constant encouragement. I am also grateful to Prof. D. P. Choudhary
(retired), University of Allahabad, Prayagraj, for pointing out various errors in this book.
However, if there are any errors left, I am the only one responsible for them. I will be
thankful to the readers if they can let me know any kind of errors in the book. I am
very thankful to the editorial team of De Gruyter, especially Dr. Ranis N. Ibragimov. He
was very helpful at various stages. I am thankful to my parents, Mr. V. K. Khattri and
Mrs. Gaytri Khattri, for their constant moral support. Last but not least, my wife Vinny
has my sincere gratitude for her patience, unwavering support, and encouragement all
across my life.

Central University of Rajasthan Vipul Kakkar
India
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1 Theory of sets

In this chapter, we will very briefly study the axiomatic set theory and construct some
important number systems.

1.1 Need of axiomatic system

It is a general curiosity of various people “What do you do with math?” or “What is
math?” A sophisticated answer of this question may be “It is the study of structures.”
A structure is a systemof some kind of objects that have certain relationships defined for
those objects or their pairs, triples, etc. The groups, rings, metric spaces, or topological
spaces are a few examples of mathematical structures. The content of the object that
constitutes the structure under study is neither highlighted nor denied during the study
of a structure. Although it is not necessary to know what oxygen is throughout life, but
it is a good idea to know what you are breathing at least once in your life.

The theory of sets as a formal study of mathematics started with the work of Georg
Cantor. It was initiated from the questions of analysis.

Suppose that∑n=∞n=−∞ ane
int and∑n=∞n=−∞ bne

int (0 ≤ t < 2π) are the Fourier series such
that

n=∞
∑

n=−∞
ane

int =
n=∞
∑

n=−∞
bne

int.

Is an = bn for all n? Cantor in 1870 showed that this is true. He defined a set as follows:

By a set we shall understand any collection into a whole X of any definite, distinct objects
x (which will be called elements of X) of our intuition or of our thought.

Wemay further askwhat ismeant by objects, distinct objects, collections, etc. There-
fore a definition is required. It seems that theremust be a pointwherewe can start. Such
concepts are called the primitive concepts. The term “set” will be one of the primitive
terms for us. Let us consider one example (nonmathematical) that we can face.

Example 1.1.1. One day a little kid called Mr. Vanjul asked his mother after seeing a
baby cat “Who is mother of that baby cat?” His mother replied that the black cat is the
mother of that baby cat. Mr. Vanjul further asked “Who is mother of that black cat?” His
mother replied that she did not know but it certainly exists. As soon as Mr. Vanul got the
existence of a mother, he started asking the existence of mother of mother.

This seems to be an infinite loop of query, but very cleverly his mother made an
assumption or an axiom that there is a cat who is not a baby of any cat. In the evidence,
she told a story of Adam and Eve and assumed that there must be Adam and Eve like
creature for cats also.

https://doi.org/10.1515/9783111636085-001



2 � 1 Theory of sets

There are situations in which certain assumption can give rise to an adverse sit-
uation. These are called paradoxes. Let us consider the following (nonmathematical)
examples.

Barber’s paradox
There is a barber who shaves all those and only those who does not shave themselves.
This statement can not answer “Who shaves the barber?” If he shaves himself, then he
contradicts the statement. If he does not shave himself, then according to the statement,
he must shave himself, again a contradiction.

King–thief paradox
One day, a thief was caught and taken to the king’s court. The king instructed his minister
to inquire with the thief about the truth. He ordered a life sentence for speaking the truth
otherwise hanging the thief to death. The thief was brought before the king the following
day. The king asked “What would you like to say?” The thief responded “I will be hanged
until death, my lord!” Upon hearing this, the king had no choice but to leave the thief, as
if his statement were false, then he would not be hanged, but he should have been hanged
for the false statement. On the other hand, the king would contradicted himself again if it
was true that he would be hanged as for the truth, he should have sentenced him to life in
prison.

An axiomatic system for the theory of sets is required to study and develop a theory
that is free of paradoxes.

1.2 Logic

The logicmay be defined as a language of science. In any language, we usually find some
symbols and their combination, which we call a sentence, such that our idea can be
expressed and shared. In our particular situation, we are interested in those sentences
for whichwe can affirmwhether they are true or false but not both. These sentences are
calledmathematical or logical statements or propositions. By a statementwewill always
mean amathematical statement. Wewill combine the statements using the connectives.
These are “and”, “or”, “not”, “if . . . , then”, “if and only if”.

If p denotes a statement, then not p is called the negation of p. We denote is by ¬p.
The negation of a true sentence is false, and that of a false sentence is true.

Let p and q be statements. We denote p and q by p ∧ q and call the conjunction. The
conjunction of two sentences is true if and only if both statements are true. If we assign
“T” and “F”, respectively, for the true and false statements, then we can represent this
in Table 1.1, which we call a truth table:
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Table 1.1: Conjunction.

p q p ∧ q
T T T
T F F
F T F
F F F

We denote p or q by p ∨ q and call the disjunction. The disjunction of two sentences
is true if and only if at least one of the statements is true. By p ⇒ q we mean that the
statement p logically implies q. This is called the implication. The implication p ⇒ q is
false if p is true and q is false; otherwise, it is true. There are different ways of stating
this; for example, “p implies q”, or “if p, then q”, or “p is a sufficient condition for q”,
or “q is a necessary condition for p”. In p ⇒ q, p is called a hypothesis or antecedent,
and q is called a conclusion or consequent. The truth table of the implication is shown
in Table 1.2:

Table 1.2: Implication.

p q p⇒ q

T T T
T F F
F T T
F F T

From the truth table of implication we can observe that if the hypothesis is false,
then the implication is always true irrespective of conclusion. There will be several
places where we will be using this fact in proving some statement. A sentence whose
truth-value is always true is called as a tautology. A sentence whose truth value is al-
ways false is called a contradiction.

Two mathematical statements p and q are called logically equivalent if p ⇒ q and
q ⇒ p. We denote it by p⇔ q. We can check that the implication p⇒ q is logically equiv-
alent to¬p∨q. The following laws hold for the connectives conjunction, disjunction, and
negation.
(i) Idempotent law
(a) p ∧ p⇔ p, (b) p ∨ p⇔ p.

(ii) Associative law
(a) p ∧ (q ∧ r)⇔ (p ∧ q) ∧ r, (b) p ∨ (q ∨ r)⇔ (p ∨ q) ∨ r.

(iii) Commutative law
(a) p ∧ q ⇔ q ∧ p, (b) p ∨ q ⇔ q ∨ p.
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(iv) Distributive law
(a) p ∧ (q ∨ r)⇔ (p ∧ q) ∨ (p ∧ r),
(b) p ∨ (q ∧ r)⇔ (p ∨ q) ∧ (p ∨ r).

(v) Identity law

(a) p ∧ T ⇔ p, (b) p ∨ F ⇔ p,
(c) p ∧ F ⇔ F , (d) p ∨ T ⇔ T .

(vi) De Morgan’s law
(a) ¬(p ∧ q)⇔ ¬p ∨ ¬q, (b) ¬(p ∨ q)⇔ ¬p ∧ ¬q.

(vii) Negation law
(a) p ∧ ¬p⇔ F , (b) p ∨ ¬p⇔ T , (c) ¬(¬p)⇔ p.

The following rules of inference are used in deriving the conclusion from a given hy-
pothesis.
(i) Tautology: p⇒ p.
(ii) Rule of detachment: If p is true and p⇒ q, then q is true.
(iii) Rule of syllogism: If p⇒ q and q ⇒ r, then p⇒ r.
(iv) Contrapositive rule: p⇒ q ⇔ ¬q ⇒ ¬p.

Let P(x) denote an expression that involves some variable x that becomes a mathemat-
ical statement when we substitute a suitable object for x. We will use two logical quan-
tifiers called the universal quantifier ∀ and the existential quantifier ∃. By (∃x, P(x))we
mean that “there exists an object x such that P(x) is true”. By (∀x, P(x))wemean that “for
all objects x, P(x) is true”. We can observe that the negation of (∃x, P(x)) is (∀x,¬P(x))
and the negation of (∀x, P(x)) is (∃x,¬P(x)).

1.3 The Zermelo–Fraenkel axiomatic system

Theworks of Georg Cantor and Richard Dedekind paved theway for themodern set the-
ory. In its beginning the paradoxes appeared in the set theory. Therefore set theory re-
quired an axiomatic system thatwas free fromparadoxes. In this section,wepresent one
axiomatic system called the Zermelo–Fraenkel axiomatic system. There are also other
axiomatic systems for the set theory. The term “set” will be a primitive term for us. Also,
the sense of membership will also be primitive for us. By x ∈ A we will mean that “the
object x is a member of A”. There are other ways of saying the same thing, for example,
“x belongs to A”, “x is in A”, etc. By x ∉ A we mean that “x is not a member of A”. We
have one more predicate that we take as a primitive term. This predicate has the sense
of equality. We denote it by =.

Axiom of extension. If every element of the set A is an element of the set B and every
element of the set B is an element of the set A, then the set A is equal to the set B.
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This simply says that a set is completely determined by the expansion or extension
of its elements. This axiom indeed relates the predicates ∈ and =.

Axiom of existence. There is a set with no elements.

By the axiom of extension we can observe that the set containing no element is
unique. This set is called the empty set or null set. We denote it by 0.

Let P(x) denote a property that involves some variable x.

Axiom of specification. Given a set A, there is a set B that consists of all the elements x
from the set A satisfying P(x).

By axiom of specification, {x ∈ A | P(x)} is a set. By the axiom of extension we can
note that such a set is unique. We must definitely point out that we are not saying that
there is a set for any property. Let us check if we have this as an axiom. This implies that
M = {x | x ∉ x} is a set. Then either M ∈ M or M ∉ M . If M ∈ M , then M ∉ M , and
if M ∉ M , then by the defining property of the set M ∈ M . Therefore we get a paradox
called as Russell’s paradox. Indeed, this axiom restricts in defining the set of all sets. On
the contrary, if S is the set of all sets, then by the axiom of specification {x ∈ S | x ∉ x} is
a set, but this leads to a contradiction.

If A and B are sets, then by the axiom of specification {x ∈ A | x ∉ B} is a set. This is
denoted by A \ B or A − B and called the complement of B in A.

We say that a set A is a subset of a set B if x ∈ A implies x ∈ B. We denote this by
A ⊆ B. We can easily note that A ⊆ A. By A ⊂ B or A ⫋ B we mean A ⊆ B and A ̸= B. If
A ⊂ B, then we say that A is a proper subset of B. It is easy to observe that A = B if and
only if A ⊆ B and B ⊆ A.

Axiom of power set. Let A be a set. Then there exists a set whose elements are precisely
the subsets of A.

If A is a set, then we denote the set of all subsets of A by 𝒫(A).

Axiom of pair. Let A and B be sets. Then there exists a set C whose elements are precisely
A and B.

Let A be a set. Then by the axiom of pair, {A,A} is a set, and by axiom of extension it
is precisely {A}.

Let A and B be sets. Let a ∈ A and b ∈ B. Then by the axiom of pair, {{a}, {a, b}} is
a set. We denote it by (a, b). The set (a, b) is called the ordered pair. We can easily note
that (a, b) = (c, d) if and only if a = c and b = d. This indeed justifies the word “ordered
pair”.

Remark 1.3.1. The definition (a, b) = {{a}, {a, b}} is called the Kuratowski definition of
an ordered pair. There is another way of defining an ordered pair, which is called Haus-
dorff’s definition. By Hausdorff’s definition
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(a, b) = {{a, 0}, {b, {0}}}.

Axiom of union. Let C be a set. Then there exists a set whose elements are precisely the
elements of elements of C.

Let C be a collection of sets. By⋃ C or⋃{A | A ∈ C}wemean the set whose elements
are precisely the elements of elements of C. This called the union of members of C. If
C = {A,B}, then we denote the union by A ∪ B.

Let C be a collection of sets. Then by the axiom of specification,

⋂ C = {x ∈⋃
󵄨󵄨󵄨󵄨󵄨󵄨 x ∈ A, ∀A ∈ C}

is a set. This is called the intersection of members of C. If C = {A,B}, then we denote the
intersection by A ∩ B.

Let F(x, y) denote a property such that for every x, there is a unique y for which
F(x, y) holds.

Axiom of replacement. Let A be a set. Then there exists a set B such that for each x ∈ A,
there is y ∈ B such that F(x, y) holds.

Note that this axiom allows us to replace some of the elements of the setA by a set B.

Axiom of regularity. Let A be a set. Then there exists a set B in the set A such that no
member of B is in A.

By this axiomwe canprove that ifA is a set, thenA ∉ A. On the contrary, suppose that
there exists a set A such that A ∈ A. Then A ∈ A ∩ {A}. This implies that A ∩ {A} ̸= 0. This
is a contradiction as by the axiom of regularity there is a set in {A} whose intersection
with {A} is empty.

By this axiom we can also prove that if A and B are sets, then either A ∉ B or B ∉ A.
We leave this as an exercise.

Let A be a set. Then the successor of A is the set A ∪ {A}. We denote it by A+ or A + 1.
A set S is called an inductive set if 0 ∈ S and A ∈ S implies that A+ ∈ S.

Axiom of infinity. There exists an inductive set.

We can easily observe that an arbitrary intersection of inductive sets is again an
inductive set. Thus the smallest inductive set exists. We denote it byℕ0.

Let the symbol 0 (zero) denote the empty set 0. We denote 1 for the successor of 0,
that is,

1 = 0+ = 0 ∪ {0} = {0} = {0}.

Similarly, 2 denotes the successor of 1, that is,

2 = 1+ = 1 ∪ {1} = {0, 1} = {0, {0}}.
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Once we define n − 1, we define n as the successor of n − 1. Note that

n = {0, 1, . . . , n − 1}.

Thus

ℕ0 = {0, 1, . . . , n, . . . }.

We denote byℕ the setℕ0 \ {0}, that is,

ℕ = {1, 2, . . . , n, . . . }.

The setℕ is called the set of natural numbers.
The above-mentioned nine axioms constitute the Zermelo–Fraenkel axiomatic sys-

tem. Later, we will add one more axiom called the “Axiom of choice”. We will assume all
these ten axioms have a precise clarity, so that we are not going to face any problematic
situation as far as the logic is concerned.

1.4 Relation

Let X and Y be sets. Then the Cartesian product X ×Y of X and Y is the set of all ordered
pairs (x, y), where x ∈ X and y ∈ Y , that is,

X × Y = {(x, y) | x ∈ X and y ∈ Y}.

Note that X × Y ⊆ 𝒫(𝒫(X ∪ Y )).

Definition 1.4.1. Let X and Y be sets. Then a relation R from X to Y is a subset of X × Y .

Let x ∈ X and y ∈ Y . If (x, y) ∈ R, then we say that x is related to y under the
relation R. We also express it as xRy. A relation R from a set X to X is called a relation
on X .

Example 1.4.2. Let X be a set. Then the relation ΔX = {(x, x) | x ∈ X} is called the diago-
nal relation on X .

Example 1.4.3. Let X be a set. Then the relation

∈X= {(x, y) | x, y ∈ X and x ∈ y}

is called the membership relation on X .

Let R be a relation from a set X to a set Y . Then the set

Dom(R) = {x ∈ X | ∃y ∈ Y such that (x, y) ∈ R}
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is called the domain of R. Note that Dom(R) ⊆ X . Also, the set

Im(R) = {y ∈ Y | ∃x ∈ X such that (x, y) ∈ R} ⊆ Y

is called the image or range of R. The set Y is called the codomain of R.

Definition 1.4.4. Let R be a relation from a set X to a set Y , and let S be a relation from
Y to a set Z. Then the composition S ∘ R of relations R and S is defined as

S ∘ R = {(x, z) ∈ X × Z | ∃y ∈ Y such that (x, y) ∈ R and (y, z) ∈ S}.

We can show that if R, S, and T are the relations from a set X to a set Y , from Y to a
set Z, and from Z to a setW , respectively, then (T ∘ S) ∘ R = T ∘ (S ∘ R).

Definition 1.4.5. Let R be a relation from a set X to a set Y . Then the inverse relation
R−1 of R is defined as

R−1 = {(y, x) ∈ Y × X | (x, y) ∈ X × Y}.

Example 1.4.6. Let X = {x, y, z} and R = {(x, y), (x, z)}. Then R−1 = {(y, x), (z, x)}. Note
that R ∘ R−1 = {(y, y), (y, z), (z, y), (z, z)} and R−1 ∘ R = {(x, x)}.

Definition 1.4.7. A relation R on a set X is called
(i) reflexive if (x, x) ∈ R for all x ∈ X ;
(ii) symmetric if (x, y) ∈ R implies (y, x) ∈ R for all x, y ∈ X ;
(iii) transitive if (x, y) ∈ R and (y, z) ∈ R imply (x, z) ∈ R for all x, y, z ∈ X .

Note that R is reflexive if and only if ΔX ⊆ R, R is symmetric if and only if R
−1 = R, and R

is transitive if and only if R ∘ R ⊆ R.

Definition 1.4.8. A relation R on a set X is said to be an equivalence relation if it is re-
flexive, symmetric, and transitive.

Definition 1.4.9. Let R be an equivalence relation on a set X . Then the equivalence class
[x] of x ∈ X is the set of all elements of X that are related to x. In other words,

[x] = {y ∈ X | (x, y) ∈ R}.

We also denote the equivalence class [x] by Rx or x. Since x ∈ [x], [x] ̸= 0. We can
easily show that the equivalence classes [x] and [y] are either equal or disjoint according
to (x, y) ∈ R or (x, y) ∉ R, respectively. The set X/R of all equivalence classes of elements
of a set X under an equivalence relation R is called the quotient set of X modulo R. In
other words,

X/R = {[x] | x ∈ X}.
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Definition 1.4.10. Let X be a set. A subset 𝒜 of the power set of X is called a partition
of X if the union of all members of 𝒜 is X and any two distinct sets A and B in 𝒜 are
disjoint.

We can clearly note that if R is an equivalence relation on a set X , then the quotient
set X/R is a partition of X . Conversely, given a partition 𝒜 of a set X , we can define the
equivalence relation

R = {(x, y) | ∃A ∈ 𝒜 such that x, y ∈ A}.

We can also check that the quotient set X/R is precisely the partition𝒜.

Definition 1.4.11. A relation R on a set X is called
(i) antisymmetric if whenever (x, y) ∈ R and (y, x) ∈ R, then x = y.
(ii) asymmetric if (x, y) ∈ R implies (y, x) ∉ R for all x, y ∈ X .
(iii) partial order if it is reflexive, antisymmetric, and transitive.
(iv) strict order if it is asymmetric and transitive.

If R is a partial order relation on a set X and (x, y) ∈ R, then we denote it by x ≤ y or
y ≥ x. The pair (X ,≤) is called a partially ordered set or poset. When the partial order
on X is understood, we will say that X is a partially ordered set. If S is a strict order on
a set X and (x, y) ∈ S, then we denote it as x < y or y > x. We can easily show that if S is
a strict order on X , then the relation R on X defined by

(x, y) ∈ R if and only if (x, y) ∈ S or x = y

is a partial order on X . Conversely, if R is a partial order on X , then the relation S on X
defined by

(x, y) ∈ S if and only if (x, y) ∈ R or x ̸= y

is a strict order on X .

Example 1.4.12. Let (X ,≤1) and (Y ,≤2) be two posets. The relation ≤ on X ×Y defined by
(x1, y1) ≤ (x2, y2) if either (x1 ≤1 x2) or (x1 = x2 and y1 ≤2 y2) is a partial order on X × Y .
This is called the lexicographic order or dictionary order on X × Y .

Example 1.4.13. Let (X ,≤) be a poset and Y ⊆ X . Then ≤ ∩(Y × Y ) is a partial order on
Y induced by the partial order on X .

We say that two elements x and y of a poset X are comparable if either x ≤ y or
y ≤ x. A partial ordered relation ≤ on a set X is called a total order if any two elements
of X are comparable. A subset Y of a poset (X ,≤) is called a chain if Y is a total ordered
set with respect to the induced partial order on Y .
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Let A be a subset in a poset X . Then x ∈ X is called an upper bound (respectively, a
lower bound) of A if a ≤ x (respectively, x ≤ a) for all a ∈ A. It is not necessary that an
upper bound or a lower bound of a set A exists in a poset X . If an upper bound (respec-
tively, a lower bound) of a set A exists in X , say x, then we say that A is bounded above
(respectively, bounded below) by x. An elementm ∈ X is called a maximal (respectively,
a minimal) of X if for all elements x ∈ X with m ≤ x (respectively, x ≤ m) we have that
x = m. An element g ∈ X (respectively, s ∈ X) is called the greatest or largest element
(respectively, the smallest or least element) ofX if x ≤ g (respectively, s ≤ x) for all x ∈ X .
Note that the greatest or the least element (if it exists) is unique. A partial order ≤ on a
set X is called a well order if every nonempty subset of X has the least element in it. If ≤
is a well order on X , then we say that (X ,≤) is a well-ordered set.

Let A be a subset of a poset X . Then l ∈ X is called the least upper bound or supre-
mum ofA if it is an upper bound ofA and the least element in the set of all upper bounds
of A. We denote the least upper bound of a set A (if it exists) by lub(A) or sup(A). Also, an
element g ∈ X is called the greatest lower bound or infimum of A if it is a lower bound
of A and the greatest element in the set of all lower bounds of A. We denote the greatest
lower bound of a set A (if it exists) by glb(A) or inf(A). A partial order ≤ on a set X is
called a complete order if all the nonempty subsets of X that are bounded above have
the least upper bounds in X . If a partial order ≤ is a complete order on X , then we also
say that X has the least upper bound property. We can show that a partial order ≤ on a
set X is a complete order if and only if all the nonempty subsets of X that are bounded
below have the greatest lower bounds in X .

1.5 Map

The notion of a map is important in mathematics in a lot of ways. One of the most im-
portant when we try to figure out if two objects are the same in some sense. Let us
understand it by the following nonmathematical example.

Example 1.5.1. Ms. Vinny has two kids called Mr. Vanjual and Mr. Venu. She often takes
help from these kids while working in her kitchen. Mr. Vanjul knows only 1, 2, and 3,
whereas Mr. Venu knows only a, b, and c. She has three boxes containing sugar, salt, and
baking soda, respectively, in the three boxes. She puts the labels 1, 2, and 3, respectively,
for sugar, salt, and baking soda. She also puts the labels a, b, and c, respectively, for sugar,
salt, and baking soda. Whenever she needs sugar with help of Mr. Vanjul, she just says
“Please giveme the box having label 1” and similarly for the other labels. In this way, we
can say that the set {1, 2, 3} is the same as the set {a, b, c} as far as this particular purpose
is concerned.

Definition 1.5.2. A relation f from a set X to a set Y is called a map or function if for
every x ∈ X , there is a unique y ∈ Y such that (x, y) ∈ f . In other words,
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(i) for all x ∈ X , there is y ∈ Y such that (x, y) ∈ f , and
(ii) if (x, y1) ∈ f and (x, y2) ∈ f , then y1 = y2.

If f is a map from a set X to a set Y and (x, y) ∈ f , then we say that y is the image of x
under f . We denote it as y = f (x). By the notation f : X → Y we mean that f is a map
from X to Y . Two maps f , g : X → Y are called equal if f (x) = g(x) for all x ∈ X .

Example 1.5.3. There is only onemap 0 from the empty set to any set. This map is called
the empty map. There is no map from a nonempty set to the empty set.

Example 1.5.4. The diagonal relation ΔX is a map on a set X . This map is called the iden-
tity map. We denote it by IX .

Example 1.5.5. Let A be a subset of a set X . Then the relation iA = {(a, a) | a ∈ A} is a
map from A to X . This map is called the inclusion map. We also denote it by A 󳨅→ X .

Example 1.5.6. Let X and Y be sets and fix c ∈ Y . Then the relation f = X × {c} is a map
from X to Y . This map is called a constant map. Thus f (x) = c for all x ∈ X .

Example 1.5.7. LetX1 andX2 be sets. Then pi : X1×X2 → Xi (i = 1, 2) definedby pi(x1, x2) =
xi is a map. This map is called the ith projection.

Example 1.5.8. Let R be an equivalence relation on a set X . Then the correspondence
νR : X → X/R defined by νR(x) = [x] is a map. This map is called the quotient map.

Example 1.5.9. Let f : X → Y and g : Y → Z be maps. Then their composition g ∘ f as a
relation is a map from X to Z. Note that (g ∘ f )(x) = g(f (x)).

Example 1.5.10. Let f : X → Y be a map, and let A ⊆ X . Then the map f ∘ iA : A → Y is
called the restriction of f on A. We denote this map by f |A.

Definition 1.5.11. Let f : X → Y , g : Y → Z, and h : X → Z be maps. Then the diagram

X Y

Z

h

f

g

is called commutative if h = g ∘ f .

Definition 1.5.12. A map f : X → Y is called:
(i) Injective or one-one if f (x) = f (y) implies x = y for all x, y ∈ X .
(ii) Surjective or onto if for all y ∈ Y , there is x ∈ X such that y = f (x).
(iii) Bijective if it is injective and surjective.

Let f : X → Y be amap. Then the inverse relation f −1 from Y to X need not be amap.We
can show that f −1 is a map if and only if f is bijective. In this case, f −1 is also bijective.
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Let f : X → Y be a map, and let A be a subset of X . Then the set

f (A) = {f (a) | a ∈ A} ⊆ Y

is called the image of A under f . Note that f is surjective if and only if f (X) = Y . We can
observe that if A and B are subsets of X , then f (A ∪ B) = f (A) ∪ f (B) and f (A ∩ B) ⊆
f (A) ∩ f (B). Also, f (A ∩ B) = f (A) ∩ f (B) for all subsets A and B of X if and only if f is
injective.

Let f : X → Y be a map, and let B be a subset of Y . Then the set

f −1(B) = {x ∈ X | f (x) ∈ B} ⊆ X

is called the inverse image or preimage of B under f . We can show that if A and B are
subsets of Y , then f −1(A∪B) = f −1(A)∪f −1(B), f −1(A∩B) = f −1(A)∩f −1(B), and f −1(A\B) =
f −1(A) \ f −1(B).

Let I and X be sets. Then the domain I of a surjective map f : I → X is called
an indexing set. The use of an indexing set is to collect as many sets (which are not
necessarily distinct) as elements in I . Let

S = {Aα | α ∈ I ,where I is an indexing set}

be a collection of sets. The union of the members of the above collection is denoted by
⋃α∈I Aα or ⋃{Aα | α ∈ I}. We have the corresponding notation ⋂α∈I Aα for the intersec-
tion. We can generalize the behavior of arbitrary union or intersection of subsets under
the map f : X → Y ; for example,

f(⋃
α∈I

Aα) = ⋃
α∈I

f (Aα).

We leave the others as an exercise for the reader.We are now able to have onemore
axiom, “Axiom of choice”. This axiom is independent of all the axioms of the Zermelo–
Fraenkel system.

Axiom of choice. Let X be a set of nonempty sets. Then there is a function f : X → ⋃X
such that f (A) ∈ A for all A ∈ X. Such a function f is called a choice function.

Let I be an indexing set, and let 𝒞 = {Xα | α ∈ I} be a collection of sets. Then the set

∏
α∈I

Xα = {x : I → ⋃
α∈I

Xα
󵄨󵄨󵄨󵄨󵄨󵄨 x(α) ∈ Xα}

is called the Cartesian product of the collection 𝒞.
Let f : X → Y be a map. Suppose that R and S are equivalence relations on X and Y ,

respectively. It is natural to think of a map between the quotient sets X/R and Y/S such
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that the equivalence class of x ∈ X corresponds to the equivalence class of f (x) ∈ Y . In
general, this correspondence need not be a map.

For a map f : X → Y , we define the map (f × f ) : X × X → Y × Y by (f × f )(x1, x2) =
(f (x1), f (x2)). Suppose that R and S are equivalence relations on X and Y , respectively.
Then f : X → Y is called a relation-preserving if (f × f )(R) ⊆ S. In other words, (f ×
f )(x1, x2) ∈ S for all (x1, x2) ∈ R.

If f : X → Y be a map, then the equivalence relation Ker f = (f × f )−1(ΔY ) on the set
X is called the kernel of f . Note that f is injective if and only if Ker f = ΔX .

Let R and S be equivalence relations on the sets X and Y , respectively. Let f : X → Y
be a relation-preserving map. Then we have the map ̃f : X/R→ Y/S defined by ̃f ([x]) =
[f (x)]. Observe that the following diagram is commutative:

X Y

X/R Y/S

νR

f

νS
̃f

We can check that a map ̃f that makes the above diagram commutative is unique. Also,
if two maps f : X → Y and ̃f : X/R → Y/S make the above diagram commutative, then
f is necessarily a relation-preserving map.

Let us take S = ΔY in the above diagram and suppose R ⊆ Ker f . Then we have the
map g : X/R→ Y defined by g([x]) = f (x). Note that g ∘νR = f and such amap is unique.
Observe that to have a well-defined map g : X/R → Y , it is necessary that R ⊆ Ker f . In
this case the relation (f × f )(R) is an equivalence relation on Y . Moreover, if f : X → Y
is surjective and R ⊆ Ker f , then we have a unique bijective map ̃f : X/R → Y/S that
makes the following diagram commutative:

X Y

X/R Y/S

νR

f

νS
̃f

We are now in position to prove the following result, which is fundamental in nature.

Theorem 1.5.13 (Fundamental theorem of maps). Let R be an equivalence relation on a
set X, and let f : X → Y be a map. Then there is a unique map ̃f : X/R → Y that makes
the following diagram commutative if and only if R ⊆ Ker f :

X Y

X/R

νR

f

̃f

Also, ̃f is injective if and only if R = Ker f , and ̃f is surjective if and only if f is surjective.
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Proof. The existence of such a map ̃f : X/R→ Y is guaranteed by the above discussion.
Now

Ker ̃f = {([x], [y]) ∈ X/R × X/R | ̃f ([x]) = ̃f ([y])}
= {([x], [y]) ∈ X/R × X/R | (x, y) ∈ Ker f }.

Note that ̃f is injective if and only if Ker ̃f = ΔX/R if and only if R = Ker f .
Since νR is surejective and ̃f ∘ νR = f , ̃f is surjective if and only if f is surjective.

1.6 Construction of number systems. I

In this section, we provide the construction of some number systems. Recall that

ℕ0 = {0, 1, . . . , n, . . . }.

Also, recall from the construction ofℕ0 that n ∈ n + 1 for all n ∈ ℕ0. Note that the
following properties hold in the setℕ0:
(i) 0 ∈ ℕ0.
(ii) if n ∈ ℕ0, then n

+ ∈ ℕ0.
(iii) n+ = m+ ⇔ n = m for all n,m ∈ ℕ0.
(iv) 0 ̸= n+ for all n ∈ ℕ0.
(v) Suppose that P(m) denotes some property that involvesm ∈ ℕ0. If P(0) holds and

P(n+) holds whenever P(n) holds, then P(n) holds for all n ∈ ℕ0.

We will only prove (v). Let A = {n ∈ ℕ0 | P(n) holds}. Note that A is an inductive set.
Since ℕ0 is the smallest inductive set, ℕ0 ⊆ A. Since A ⊆ ℕ0, A = ℕ0. Property (v)
is called the principle of mathematical induction. Using this, we can prove that if P(1)
holds and P(n+) holds whenever P(n) holds, then P(n) holds for all n ∈ ℕ. We will also
call this the principle of mathematical induction.

Definition 1.6.1. Let X be a nonempty set. Then a binary operation on X is a map ∘ :
X × X → X . We denote the element ∘(x, y) of X by x ∘ y.

Having defined the natural numbers, we wish to define two binary operations on
ℕ0, the addition and multiplication. To define these binary operations, we need the fol-
lowing:

Theorem 1.6.2 (Recursion theorem). Let a ∈ ℕ0 be a fixed element, and let f : ℕ0 → ℕ0
be amap. Then there is a uniquemap g : ℕ0 → ℕ0 such that g(0) = a and g(n

+) = f (g(n))
for all n ∈ ℕ0.

Proof. Consider the set S consisting of the relations h onℕ0 such that (0, a) ∈ h and if
(n,m) ∈ h, then (n+, f (m)) ∈ h. Note that S ̸= 0 asℕ0×ℕ0 ∈ h. We can check that g = ⋂ S
is the required map and such a map is unique.
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Define the map ψ : ℕ0 → ℕ0 by ψ(n) = n
+. Let m ∈ ℕ0 be fixed. By the recursion

theorem we have a unique map gm : ℕ0 → ℕ0 defined by gm(0) = m and gm(n
+) =

ψ(gm(n)).
Letm, n ∈ ℕ0. We define the binary operation + (called the addition) on the setℕ0

by m + n = gm(n). Observe that m + 0 = gm(0) = m and m + n+ = gm(n
+) = ψ(gm(n)) =

(m+n)+1. Therefore the addition is defined onℕ0 recursively. Also, note that n+1 = n
+.

From the above discussion we observe that for m ∈ ℕ0, we have the map ψm :
ℕ0 → ℕ0 defined by ψm(n) = n + m. By the recursion theorem we have a unique map
μm : ℕ0 → ℕ0 defined by μm(0) = 0 and μm(n

+) = ψm(μm(n)).
Letm, n ∈ ℕ0. We define the binary operation ⋅ (called themultiplication) on the set

ℕ0 bym⋅n = μm(n). In place ofm⋅n, wewill onlywritemn. Observe thatm⋅0 = μm(0) = 0
andmn+ = μm(n

+) = ψm(μm(n)) = (mn) +m. Therefore the multiplication is defined on
ℕ0 recursively. Observe that the multiplication onℕ0 is the repeated addition.

Letm, n ∈ ℕ0. We say that n < m if n ∈ m. Observe that < is a strict order onℕ0, and
hencewe get a partial order ≤ onℕ0. Also observe that (ℕ0,≤) is a well-ordered set. This
is usually called thewell-ordering principle. Clearly, givenm, n ∈ ℕ0, we have eitherm <
n or n < m orm = n, and no two of these can occur together. This is called the trichotomy
law. It is easy to observe that < on ℕ0 respects the addition and multiplication in the
sense that if m, n > 0, then m + n > 0 and mn > 0. By the statement “ℕ0 is a number
system” we mean the set ℕ0 with two binary operations + and ⋅ and a partial order ≤
that respects these binary operations. Finally, observe that m < n if and only if there is
unique r ∈ ℕ such that n = m + r.

Let us try to solve the equation X + 2 = 1 in the number systemℕ0. Suppose there
is a ∈ ℕ0 such a + 2 = 1. This implies that a + 1 = 0. This is a contradiction since 0 is not
successor of any element inℕ0. It is natural to searchwhere the solution of the equation
X + a = b exists, where a, b ∈ ℕ0. For this, we define the relation R on the setℕ0 ×ℕ0
by ((a, b), (c, d)) ∈ R if a + d = b + c. We can check that R is an equivalence relation on
ℕ0×ℕ0. The quotient set (ℕ0×ℕ0)/R is called the set of integers, andwe denote it byℤ.
The element x = [(a, b)] ∈ ℤ is called an integer.

Let x = [(a, b)] and y = [(c, d)]be integers.Wedefine the addition andmultiplication
in ℤ as follows:

[(a, b)] + [(c, d)] = [(a + c, b + d)],

[(a, b)][(c, d)] = [(ac + bd, ad + bc)].

We can check that the addition and multiplication are binary operations on ℤ and that
(ℤ,+, ⋅) is a ring. Note that 0 = [(a, a)] is the additive identity of (ℤ,+) and that for
x = [(a, b)] ∈ ℤ, −x = [(b, a)] is the additive inverse of x.

Let x = [(a, b)] and y = [(c, d)] be integers. We say that x < y if a + d < b + c. We
can check that < is a strict order on ℤ, which respects the addition and multiplication.
Define the map f : ℕ0 → ℤ by f (n) = [(n, 0)]. Check that f is injective and preserves the
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addition, multiplication, and strict order < onℤ in the sense that f (n+m) = f (n)+ f (m),
f (nm) = f (n)f (m), and n < m⇒ f (n) < f (m). We call such a map an embedding.

Let x = [(a, b)]. Then a > b or a = b or a < b. If a = b, then x = 0. If a > b, then
[(a, b)] = [(a − b, 0)]. If a < b, then [(a, b)] = [(0, b − a)]. Let n ∈ ℕ. In the sense of
the above embedding, we represent [(n, 0)] by n and [(0, n)] by −n. In this way, we write
ℤ = ℕ ∪ {0} ∪ (−ℕ).

Let a, b ∈ ℤ with b ̸= 0. Observe that there are equations bX = a that are not
solvable in the set of integers, for example, the equation 2X = 1. In the same spirit as
before, wewill enlarge the systemof integers. Define the relationR on the setℤ×(ℤ\{0})
by ((a, b), (c, d)) ∈ R if ad = bc. Clearly, R is an equivalence relation onℤ × (ℤ \ {0}). The
equivalence class [(a, b)] is called a rational number. We denote it by a

b . The quotient set
ℤ × (ℤ \ {0})/R is denoted byℚ.

Let a
b ,

c
d ∈ ℚ. We define the addition and multiplication inℚ as follows:

a
b
+
c
d
=
ad + bc
bd
,

a
b
c
d
=
ac
bd
.

We can check that (ℚ,+, ⋅) is a field.

Definition 1.6.3. A field (𝔽,+, ⋅) is called an ordered field if there is a strict order < on 𝔽
such that
(i) given x, y ∈ 𝔽, one and only one of the following is satisfied:

x < y or x = y or y < x;

(ii) if x < y, then for all z ∈ 𝔽, we have x + z < y + z;
(iii) if x > 0 and y > 0, then xy > 0.

We define < onℚ as a
b <

c
d if ad < bc. Clearly, (ℚ,+, ⋅) is an ordered field with this strict

order < onℚ. The map f : ℤ→ ℚ by f (k) = k
1 is an embedding of ℤ inℚ.

1.7 Construction of number systems. II

In the previous section, we enlarged the number system by searching the solutions of
some equations. We can easily show that the equation X2 = 2 has no solution in ℚ. In
the same temperament, we may be interested in enlarging the rational number system.
Indeed, we will do something more. We will see that the rational number system is in-
complete in some sense, and we will complete it by getting an enlarged system, which
is unique in some sense.
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Consider the set

L = {x ∈ ℚ | x > 0 and x2 < 2}.

Note that L is a nonempty subset ofℚ since, for example, 1 ∈ L. Note that if x ∈ L, then
x2 < 2 < 4. This implies that x < 2. Therefore L is bounded above by 2. We claim that the
least upper bound of L does not exist inℚ. On the contrary, suppose that l = lub(L) ∈ ℚ.
Clearly, l > 0 as 1 ∈ L⇒ 1 ≤ l. Then we have one of the following:

l2 < 2 or l2 = 2 or l2 > 2.

Since there is no rational whose square is 2, l2 < 2 or l2 > 2. First, suppose that l2 < 2.
Then l ∈ L. Now we will show that we can find a larger rational number l + h (h > 0)
such that (l + h)2 < 2. Suppose that 0 < h < 1. Then

(l + h)2 = l2 + 2lh + h2 < l2 + 2lh + h.

Therefore it is sufficient to find h such that l2 + 2lh + h = 2. This gives h = 2−l2
2l+1 . For this h,

l + h ∈ L. This shows that l cannot be the least upper bound of L. This is a contradiction.
Now suppose that l2 > 2. We will show that we can find a smaller rational number

l − k (k > 0) such that (l − k)2 > 2. Note that

(l − k)2 = l2 − 2lk + k2 > l2 − 2lk.

Therefore it is sufficient to find k such that l2 − 2lk = 2. This gives k = l2−2
2l . This shows

that l cannot be the least upper bound of L. This is again a contradiction.
From the above discussion we conclude that ℚ is not a complete ordered set. Now

we enlarge the ordered field ℚ to an ordered field that is complete with respect to the
order defined on this enlarged system. We will call this as a complete ordered field. We
can note thatℚ is partitioned into the following two sets:

L = {x ∈ ℚ | x > 0 and x2 < 2} ∪ {x ∈ ℚ | x ≤ 0},

U = {x ∈ ℚ | x > 0 and x2 > 2}.

Definition 1.7.1. A pair (L,U) of nonempty subsets of ℚ is called a Dedekind cut if the
following properties hold:
(i) L ∪ U = ℚ and L ∩ U = 0,
(ii) If x ∈ L and y ∈ U , then x < y.
(iii) The set L does not contain the largest rational number.

Remark 1.7.2. We could define the Dedekind cut by replacing condition (iii) by “The set
U does not contain the smallest rational number”.
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Definition 1.7.3. The set of all Dedekind cuts is denoted by ℝ. If α = (L,U) ∈ ℝ, then α
is called a real number.

Remark 1.7.4. There are two types of Dedekind cuts. The first type of Dedekind cuts
consists of those (L,U) in which U contains the smallest rational number. The second
type consists of those (L,U) in which U does not contain the smallest rational number.
Later, we will observe that the first type determines the rationals and the other type
determines some extra elements, which we will call the irrationals. These are precisely
to fill the gaps of the rationals.

Let α = (L1,U1) and β = (L2,U2) be two real numbers. We say that α = β if L1 = L2.
This will clearly imply U1 = U2. We also say that α < β if L1 is properly contained in L2.
We can check that < is a strict order on ℝ and one and only one of the following holds:

α < β or α = β or β < α.

Proposition 1.7.5. Let α = (L,U) be a real number, and let d ∈ ℚ with d > 0. Then there
exist x ∈ L and y ∈ U such that y − x = d.

Proof. First, note that either d ∈ L or d ∈ U . Suppose that d ∈ L. If z ∈ U , then d < z. It
is easy to observe that there is n ∈ ℕ such that nd > z. Therefore nd ∈ U . Consider the
following finite set

A = {kd | k ∈ ℕ and 1 ≤ k ≤ n}.

Observe that there exist two consecutive members of A, say x = ld and y = (l + 1)d,
such that x ∈ L and y ∈ U . Note that y − x = d.

Now suppose that d ∈ U . If 0 ∈ L, then we take x = 0 and y = d. If 0 ∈ U , then by the
similar argument as before we can find l ∈ ℕ such that x = −ld ∈ L and y = −ld + 1 ∈ U .

Let α = (L1,U1) and β = (L2,U2) be real numbers. We define the addition α + β of α
and β as (L,U), where L = L1 + L2 = {a + b | a ∈ L1, b ∈ L2} and U = ℚ \ L. Now we show
that (L,U) is a Dedekind cut.

Clearly, L and U partition ℚ. Let x ∈ L and y ∈ U . On the contrary, suppose that
y ≤ x. Since x ∈ L, x = a + b, where a ∈ L1, b ∈ L2. This implies that y − b ≤ a. Therefore
y − b ∈ L1. This shows that y = y − b + b ∈ L. This is a contradiction. Since L1 and L2 do
not contain the largest rational, L does not contain the largest rational.

We can easily check that if α, β, and γ are real numbers, then α+ (β+ γ) = (α+β)+ γ
and α + β = β + α.

Let 0 = (N , P), where N = {x ∈ ℚ | x < 0} and P = {x ∈ ℚ | x ≥ 0}. We can check
that (N , P) is a Dedekind cut. From now on in this section, we will denote by N the set of
negative rational numbers. We claim that α + 0 = α for every real number α = (L,U).
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Let α + 0 = (L1,U1). Let x ∈ L1. Then x = a + b, where a ∈ L and b ∈ N . This implies
that x = a + b < a. Therefore x ∈ L. Conversely, let y ∈ L. Since L has no largest element,
there is z > y such that z ∈ L. Then there is positive rational number k such that z = y+k.
Equivalently, y = z + (−k) ∈ L + N = L1. Hence L = L1. This shows that α + 0 = α.

Let α = (L,U) be a real number. We define −α = (L1,U1), where

L1 = {−x | x ∈ U , and x is not the smallest element of U (if exists)},

U1 = ℚ \ L1.

Note that (L1,U1) is a Dedekind cut. We claim that α + (−α) = 0. Let α + (−α) = (L2,U2).
Let x ∈ L2. Then x = a+b, where a ∈ L and b ∈ L1. By the definition, b = −c, where c ∈ U .
By the property of Dedekind cut, a < c = −b, that is, x = a + b < 0. Therefore x ∈ N .
Conversely, let y ∈ N . By Proposition 1.7.5 there are u ∈ L and v ∈ U such that v− u = −y.
Then y = u + (−v) ∈ L2. Hence L2 = N . This shows that α + (−α) = 0.

Let α = (L1,U1) > 0 and β = (L2,U2) > 0. We define the product αβ of α and β as
(L,U), where

L = N ∪ {xy | x ≥ 0, y ≥ 0, x ∈ L1, y ∈ L2},

U = ℚ \ L.

We first show that (L,U) is a Dedekind cut. Clearly, L ̸= 0. By Proposition 1.7.5 there are
x ∈ L1 and y ∈ L2 such that x + 1 ∈ U1 and y + 1 ∈ U2. We claim that (x + 1)(y + 1) ∈ U .
On the contrary, suppose that (x + 1)(y + 1) ∈ L. Then (x + 1)(y + 1) = ab, where a ∈ L1
and b ∈ L2. Note that a > 0 and b > 0. By the property of Dedekind cut, a < x + 1 and
b < y + 1. This shows that ab < (x + 1)(y + 1). This is a contradiction. Also, we can easily
note that L and U partitionℚ.

Since L1 and L2 have no largest elements, L has no largest element. Let x ∈ L and
y ∈ U with x > 0 and y > 0. On the contrary, suppose that y < x as x ̸= y. Then x = yk
for some rational number k > 1. Since x ∈ L, x = ab, where a ∈ L1 and b ∈ L2. Note that
a
k ∈ L1; otherwise,

a
k ∈ U1, which would imply a <

a
k . Now

y = x
k
=
a
k
b ∈ L.

This is a contradiction.
Now we define the product of any two real numbers as follows:

αβ =
{{{
{{{
{

−(−α)β if α < 0,
−α(−β) if β < 0,
(−α)(−β) if α < 0, β < 0.

We can easily check that α(βγ) = (αβ)γ and αβ = βα for all real numbers α, β, and γ.
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Let α = (L,U) > 0. We define α−1 = (L1,U1), where

L1 = N ∪ {0} ∪ {x
−1 | x ∈ U , and x is not the smallest element of U (if exists)},

U1 = ℚ \ L1.

We claim that (L1,U1) is a Dedekind cut. Clearly, L1 and U1 partition ℚ. Let z ∈ L1 and
z > 0. Then z = x−1, where x ∈ U . Now there exists y ∈ U such that y < x. Then y−1 ∈ L1
and z < y−1. This shows that L1 does not have the largest element.

Let x ∈ L1 and y ∈ U1. We claim that x < y. On the contrary, suppose that y < x as
x ̸= y. Then x = yk for some rational k > 1. Since x ∈ L1, x = z

−1, where z ∈ U . Clearly,
zk ∈ U . Then y = xk−1 = (zk)−1 ∈ L1. This is a contradiction.

Let 1 = (A,B), where A = {x ∈ ℚ | x < 1} and B = {x ∈ ℚ | x ≥ 1}. Note that 1 is a
real number. We can easily show that 1α = α for every real number α = (L,U).

Let α = (L1,U1) > 0 and α
−1 = (L2,U2). We claim that αα−1 = 1. For this, let αα−1 =

(L,U). We have to show that L = A.
Let x ∈ L. If x ≤ 0, then x ∈ A. Therefore we can suppose that x = ab, where a ∈ L1,

b ∈ L2, a, b > 0, and b ∈ L2. Then b = c
−1, where c ∈ U1. This implies that a < c. Then

x = ab = ac−1 < 1. Hence x ∈ A.
Conversely, let x ∈ A. If x ≤ 0, then x ∈ L. Suppose that 0 < x < 1. Choose u ∈ U2.

Choose n ∈ ℕ such that n(1 − x) > u. Now choose a ∈ L1 and b, c ∈ U1 with c < b such
that b− a < 1

n . Note that c > 0. Then b
−1 < c−1. This implies that b−1 ∈ L2. Since b− a <

1
n ,

ab−1 > 1 − b−1
n . Since u ∈ U2 and b

−1 ∈ L2, b
−1 < u. Then

x < 1 − u
n
< 1 − b

−1

n
< ab−1.

Since a ∈ L1 and b
−1 ∈ L2, x ∈ L. Thus L = A.

If α < 0, then we define α−1 = −(−α)−1. We can easily check that αα−1 = 1 in this case
also.

Now we show that α(β + γ) = αβ + αγ for all real numbers α = (L1,U1), β = (L2,U2),
and γ = (L3,U3). It is sufficient to prove it for positive real numbers. Let α(β+γ) = (L,U)
and αβ + αγ = (L′,U ′). We have to show that L = L′. We will only prove that all positive
elements of L are in L′ and all positive elements of L′ are in L. Let x ∈ L and x > 0. Since
x = a(b+ c) = ab+ac, x ∈ L′. Conversely, suppose that x ∈ L′ and x > 0. Then x = ab+ cd
with the understanding where a, b, c, and d belong. If a = c, then x ∈ L. Suppose that
a ̸= c. We can suppose that c < a. Then c

ad < d. This shows that
c
ad ∈ L3. Therefore

x = ab + cd = a(b + c
ad) ∈ L. Hence L = L

′.
Thus we have shown the following:

Theorem 1.7.6. The system (ℝ,+, ⋅) is a field.

Now we will observe the following:

Theorem 1.7.7. The system (ℝ,+, ⋅,<) is a complete ordered field.



1.7 Construction of number systems. II � 21

Proof. Let α = (L1,U1), β = (L2,U2), and γ = (L3,U3) be real numbers. We have already
observed that one and only one of the following holds:

α < β or α = β or β < α.

We can easily observe that if α < β and γ > 0, then αγ < βγ.
Let α < β. We will show that α + γ < β + γ for every real number γ. Suppose that

α + γ = (L,U) and β + γ = (L′,U ′). We have to show that L is properly contained in L′.
By the assumption, L1 is properly contained in L2. Therefore L is contained in L′.

Note that there is x ∈ L2 such that x ∉ L1. Therefore x ∈ U1. Since L2 has no largest
element, there is y > x in L2. By Proposition 1.7.5 there are z ∈ L3 and w ∈ U3 such that
w − z = y − x. This shows that y + z = x + w. Note that y + z ∈ L′ and x + w ∈ U . Then
y + z = x + w ∉ L. Therefore L is properly contained in L′.

Now let S be a nonempty subset of ℝ that is bounded above. Let

L = ⋃
(Li ,Ui)∈S

Li and U = ℚ \ L.

We can check that (L,U) is a real number and the least upper bound of S.

For r ∈ ℚ, we define Lr = {x ∈ ℚ | x < r} and Ur = {x ∈ ℚ | x ≥ r}. We can
check that (Lr ,Ur) is a Dedekind cut in which Ur has the smallest element. This gives the
embedding f : ℚ→ ℝ defined by f (r) = (Lr ,Ur).

Let (L,U) be a Dedekind cut in which U has the smallest element, say r ∈ ℚ. Let
x ∈ L. Then x < r. If y ∈ ℚ is such that y < r, then y ∈ L; otherwise, y ∈ U , which will
show that r ≤ y. Hence L = Lr and U = Ur . Therefore the Dedekind cut (L,U) in which U
has the smallest element determines a rational number. In view of embedding, we say
that every rational is a real number. We have seen the existence of a Dedekind cut (L,U)
in which U does not have the smallest element. The real number that is not a rational is
called an irrational number. Now we observe the following important property of ℝ.

Theorem 1.7.8 (Rational density theorem). There is a rational between two distinct real
numbers.

Proof. Let α = (L1,U1) < (L2,U2) = β. Then L1 is properly contained in L2. This implies
that there is a ∈ L2 such that a ∉ L1. Now there is an element b > a in L2. Let L = {x ∈
ℚ | x < b} and U = {x ∈ ℚ | x ≥ b}. Note that b ∈ L2 \ L and a ∈ L \ L1. This shows that

(L1,U1) < (L,U) < (L2,U2).

Now we will observe that the real number system is unique in some sense.

Theorem 1.7.9. Let (𝔽,+, ⋅,<) be a complete ordered field. Then there is a bijective map
ϕ : 𝔽→ ℝ such that
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(i) ϕ(x + y) = ϕ(x) + ϕ(y),
(ii) ϕ(xy) = ϕ(x)ϕ(y),
(iii) if x < y, then ϕ(x) < ϕ(y).

Proof. Let f : ℚ → 𝔽 be an embedding (see Exercise 1.23). Given z ∈ 𝔽, we define
Lz = {x ∈ ℚ | f (x) < z} and Uz = ℚ \ Lz. We can check that the map ϕ : 𝔽 → ℝ defined
by ϕ(z) = (Lz,Uz) is the required one.

We now provide the following number system.
Clearly, the equation X2 + 1 = 0 has no solution in the set of real numbers. Let i

denote the symbol such that i2 + 1 = 0. Consider the set

ℂ = {a + bi | a, b ∈ ℝ}.

The element z = a + bi is called a complex number. The element a is called the real
part of z, and we denote it by a = Re(z). The element b is called the imaginary part of
z, and we denote it by b = Im(z). Two complex numbers a + bi and c + di are called
equal if their respective real and imaginary parts are equal. We define the addition and
multiplication in the set of complex numbers as follows:

(a + bi) + (c + di) = (a + c) + (b + d)i,
(a + bi)(c + di) = (ac − bd) + (ad + bc)i.

We can check that (ℂ,+, ⋅) is a field and there is no order on ℂ that extends the order
of ℝ. The complex number z = a − bi is called the conjugate of z = a + bi, and the
nonnegative real number |z| = √a2 + b2 is called the modulus of z = a + bi. We can
check that |z|2 = zz.

Exercises

1.1. First of all, complete whatever is left for you as an exercise.
1.2. Construct the truth table of ((p ⇒ q) ∧ q) ⇒ r and (p ⇒ q) ∧ (q ⇒ p). Observe

whether the bracket arrangement has any role or not.
1.3. If p and q are mathematical statements, then show that the following are tautolog-

ically equivalent:
(i) p⇔ q and (p ∧ q) ∨ (¬p ∧ ¬q),
(ii) (p ∧ q)⇒ r and p⇒ (q ⇒ r).

1.4. Consider the following statements in the following box.
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1.√2 is a rational number.
2. 1 + 1 = 0.
3. The line number 3 in this box is false.
4. There is something which cannot be proved.
5. If a problem is not solvable, then it is not a problem.

Decide the truth or falsity of the statement number 3 in the above box.
1.5. Let A, B, and C be sets. Then show that

(i) A × 0 = 0 × A = 0,
(ii) A × B = B × A⇔ A = B or A = 0 or B = 0,
(iii) A × B = 0⇔ A = 0 or B = 0,
(iv) A × (B ∪ C) = (A × B) ∪ (A × C),
(v) A × (B ∩ C) = (A × B) ∩ (A × C),
(vi) (A \ B) × C = (A × C) \ (B × C).

1.6. Show that
(i) A ∩ 0 = 0,
(ii) A ∪ 0 = A,
(iii) A \ 0 = A,
(iv) 0 \ A = 0.

1.7. Show that
(i) 𝒫(A ∩ B) = 𝒫(A) ∩ 𝒫(B);
(ii) 𝒫(A) ∪ 𝒫(B) ⊆ 𝒫(A ∪ B); provide an example showing that equality need not

hold.
1.8. Let R, S, and T be relations on a set X . Then show that

(i) (S ∪ T) ∘ R = (S ∘ R) ∪ (T ∘ R),
(ii) (S ∩ T) ∘ R ⊆ (S ∘ R) ∩ (T ∘ R),
(iii) S ∘ (T ∪ R) = (S ∘ T) ∪ (S ∘ R),
(iv) S ∘ (T ∩ R) ⊆ (S ∘ T) ∩ (S ∘ R).

1.9. Let R be a relation on a set X . Show that ΔX ∘R = R = R ∘ΔX . Provide an example of
relations R, S, and T on a set X such that S ∘R = R or R∘T = R but it is not necessary
that S = ΔX or T = ΔX .

1.10. Let R be a relation from a set X to a set Y , and let S be a relation from Y to a set Z.
Then show that
(i) (R−1)−1 = R,
(ii) (S ∘ R)−1 = R−1 ∘ S−1.

1.11. LetR and S be equivalence relations onX . Show thatR∘S is an equivalence relation
if and only if R ∘ S = S ∘ R.

1.12. Let f : X → Y and g : Y → Z be maps. Then show that
(i) if f and g are injective, then g ∘ f is injective;
(ii) if f and g are surjective, then g ∘ f is surjective;
(iii) if f and g are bijective, then g ∘ f is bijective;
(iv) if g ∘ f is injective, then f is injective;
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(v) if g ∘ f is surjective, then g is surjective;
(vi) if g ∘ f is bijective, then g is surjective, and f is injective.

1.13. Let f : X → Y and g : Y → Z be bijective maps. Then show that
(i) (f −1)−1 = f ;
(ii) f −1 : Y → X is a bijective map;
(iii) f −1 ∘ f = IX , and f ∘ f

−1 = IY ;
(iv) (g ∘ f )−1 = f −1 ∘ g−1.

1.14. Show that there is no surjective map from a set to its power set.
1.15. Let X and Y be sets. Then YX denotes the set of all maps from X to Y . Show that

there is a bijective map from 2X to the power set 𝒫(X), where 2 = {0, 1}.
1.16. Let f : X → Y be a map. Then show that

(i) for each A ⊆ X , A ⊆ f −1(f (A));
(ii) A = f −1(f (A)) for all A ⊆ X if and only if f is injective;
(iii) for all A ⊆ X and B ⊆ Y , f (f −1(B) ∩ A) = B ∩ f (A);
(iv) for each B ⊆ Y , f (f −1(B)) ⊆ B;
(v) B = f (f −1(B)) for all B ⊆ Y if and only if f is surjective.

1.17. Let I and J be indexing sets. Let {Aα | α ∈ I} and {Bα | α ∈ J} be families of sets.
Then show that
(i) (De Morgan’s law) for a set X , X − (⋃α∈I Aα) = ⋂α∈I (X − Aα);
(ii) (De Morgan’s law) for a set X , X − (⋂α∈I Aα) = ⋃α∈I (X − Aα);
(iii) if I = ⋃β∈J Iβ, then

(a) ⋃{Aα | α ∈ I} = ⋃β∈J (⋃{Aα | α ∈ Iβ}),
(b) ⋂{Aα | α ∈ I} = ⋂β∈J (⋂{Aα | α ∈ Iβ});

(iv) (⋃{Aα | α ∈ I}) ∩ (⋃{Bβ | β ∈ J}) = ∪(Aα ∩ Bβ | α ∈ I and β ∈ J);
(v) (⋂{Aα | α ∈ I}) ∪ (⋂{Bβ | β ∈ J}) = ⋂(Aα ∪ Bβ | α ∈ I and β ∈ J).

1.18. A set X is called a finite set if there is a bijection between X and some n ∈ ℕ0;
otherwise, X is called an infinite set. Show that if X is finite, then
(i) every injective map f : X → X is surjective;
(ii) every surjective map f : X → X is injective.

1.19. (Pigeonhole principle) Let X and Y be finite sets containingm and n elements, re-
spectively, where m, n ∈ ℕ and n < m. Then there is no injective map from X
to Y .

1.20. (Division algorithm) Let x, y ∈ ℤ and y > 0. Show that there exists a unique pair
(q, r) ∈ ℤ ×ℤ such that x = yq + r with 0 ≤ r < y.

1.21. Show that
(i) any nonempty subset ofℤ that is bounded above inℤ has the largest element;
(ii) any nonempty subset of ℤ that is bounded below in ℤ has the least element.

1.22. Let 𝔽 be an ordered field. Show that
(i) x2 > 0 for every x ∈ 𝔽 \ {0};
(ii) 1 > 0;
(iii) if xy > 0 and y > 0, then x > 0;
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(iv) if x > 0, then x−1 = 1
x > 0;

(v) if x > 0, y > 0, and n ∈ ℕ, then x < y⇔ xn < yn.
1.23. Let 𝔽 be an ordered field with multiplicative identity 1. Form ∈ ℤ, define

m𝔽 =
{{{
{{{
{

1 + 1 + ⋅ ⋅ ⋅ + 1(m times) ifm > 0,
0 ifm = 0,
(−1) + (−1) + ⋅ ⋅ ⋅ + (−1)(−m times) ifm < 0.

Show that the map f : ℚ→ 𝔽 defined by f (mn ) = m𝔽n
−1
𝔽 is an embedding ofℚ in 𝔽.

Hence deduce that no finite field can be ordered.
1.24. Let 𝔽 be an ordered field. Define the map | ⋅ | : 𝔽 → ℝ by |x| = x if x ≥ 0 and
|x| = −x if x < 0. Show that
(i) |x| ≥ 0 and |x| = 0 if and only if x = 0;
(ii) |x| = | − x|;
(iii) |xy| = |x||y|;
(iv) |x + y| ≤ |x| + |y|.

1.25. Let (L,U) be a Dedekind cut, and let n ∈ ℕ. Show that there are x ∈ L and y ∈ U
such that y − x < 1

n .
1.26. (Irrational density theorem) Show that there is an irrational between two distinct

real numbers.
1.27. (Archimedean property) Let x, y ∈ ℝ with x > 0. Show that there is n ∈ ℕ such

that nx > y.
1.28. Let A and B partition the set of real numbers ℝ so that if a ∈ A and b ∈ B, then

a < b. Show that there is a unique real number c such that a ≤ c and c ≤ b for all
a ∈ A and b ∈ B.



2 Metric spaces

In this chapter, we define the notion of a distance or metric on a set. This will be a foun-
dation or motivation of the way we will define topology latter.

2.1 Metric spaces: examples

Consider two points x = (x1, x2) and y = (y1, y2) in ℝ
2. We know that the distance or

metric d(x, y) between x and y is given as

d(x, y) = √(x1 − y1)2 + (x2 − y2)2.

This defines a map d : ℝ2 × ℝ2 → ℝ given by (x, y) 󳨃→ d(x, y). It can be verified that the
map d satisfies the following properties:
(i) d(x, y) ≥ 0,
(ii) d(x, y) = 0 if and only if x = y,
(iii) d(x, y) = d(y, x),
(iv) d(x, y) ≤ d(x, z) + d(z, y),

where x, y, z ∈ ℝ2. Property (iii) is called the symmetry of d, and (iv) is called the triangle
inequality. The triangle inequality simply says that the sum of the lengths of two sides of
a triangle is greater than or equal to the length of the third side. These properties give
us a sense of distance or metric on a set.

Definition 2.1.1. Let X be a nonempty set. Then a map d : X × X → ℝ is called a metric
on X if for all x, y, z ∈ X , the following conditions hold:
(i) d(x, y) ≥ 0,
(ii) d(x, y) = 0 if and only if x = y,
(iii) d(x, y) = d(y, x),
(iv) d(x, y) ≤ d(x, z) + d(z, y).

The pair (X , d), where X is a nonempty set, and d a metric on X , is called a metric space.
Thus a metric d on a nonempty set is a nonnegative real-valued map that is symmetric,
satisfies the triangle inequality, and is zero only on the diagonal of X .

Let (X , d) be a metric space, and let x, y ∈ X . Then d(x, y) is called the distance
between x and y. When the metric d on a nonempty set X is given, we will only say that
X is a metric space or space. An element x in a metric space X is called a point in X . By
a set A in a metric space X we will mean that A is a subset of X .

Example 2.1.2. Consider the set ℝ of real numbers. Define d : ℝ × ℝ → ℝ by d(x, y) =
|x − y|. Then d is a metric on ℝ. The set ℝ with this metric is called the real line.

https://doi.org/10.1515/9783111636085-002
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Example 2.1.3. Consider the set ℝn (n ∈ ℕ). Let p ∈ ℝ be such that p ≥ 1, and let
x = (x1, . . . , xn) and y = (y1, . . . , yn) be in ℝ

n. Define dp : ℝ
n × ℝn → ℝ by

dp(x, y) = (
n
∑
i=1
|xi − yi|

p)

1
p

.

Then dp is a metric onℝ
n. Wewill prove the triangle inequality. First, note that for p ≥ 1,

the map f : ℝ → ℝ defined by f (t) = |t|p is convex (for p = 1, it is the consequence of
the triangle inequality onℝ, and for p > 1, the function f is twice differentiable and the
derivative f ′′(t) ≥ 0). This implies that for 0 ≤ α ≤ 1,

󵄨󵄨󵄨󵄨αu + (1 − α)v
󵄨󵄨󵄨󵄨
p ≤ α|u|p + (1 − α)|v|p,

where u, v ∈ ℝ. Therefore, for a = (a1, . . . , an) and b = (b1, . . . , bn), we have

n
∑
i=1

󵄨󵄨󵄨󵄨αai + (1 − α)bi
󵄨󵄨󵄨󵄨
p ≤

n
∑
i=1
(α|ai|

p + (1 − α)|bi|
p)

= α
n
∑
i=1
|ai|

p + (1 − α)
n
∑
i=1
|bi|

p. (2.1)

Let A = (∑ni=1 |ai|
p)

1
p and B = (∑ni=1 |bi|

p)
1
p . Then, replacing ai by

ai
A and bi by

bi
B in equa-

tion (2.1), we get

n
∑
i=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
αai
A
+ (1 − α)bi

B

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p

≤
n
∑
i=1
(α |ai|

p

Ap
+ (1 − α) |bi|

p

Bp
)

= 1. (2.2)

Taking α = A
A+B in (2.2), we get

(
n
∑
i=1
|ai + bi|

p)

1
p

≤ (
n
∑
i=1
|ai|

p)

1
p

+ (
n
∑
i=1
|bi|

p)

1
p

. (2.3)

Taking ai = xi − yi and bi = yi − zi in (2.3), we get the required triangle inequality.

Example 2.1.4. Define d∞ : ℝ
n × ℝn → ℝ by d∞(x, y) = max{|xi − yi| | 1 ≤ i ≤ n} for

x = (x1, . . . , xn) and y = (y1, . . . , yn) in ℝ
n. Then d∞ is a metric on ℝn.

Note 2.1.5. For p = 2 in Example 2.1.3, the metric d2 is called the Euclidean or usual
metric on ℝn, and the metric space ℝn is called the Euclidean space. Whenever we use
ℝn without mentioning the metric on it, we will mean that it is with the usual metric.



28 � 2 Metric spaces

Example 2.1.6. Let X be a nonempty set. Define d : X × X → ℝ by

d(x, y) = {
0 if x = y,
1 if x ̸= y.

Then d is a metric on X . This metric is called the discrete metric on X , and the space
(X , d) is called the discrete metric space.

Note 2.1.7. Let u be any positive real number. Then

d(x, y) = {
0 if x = y,
u if x ̸= y,

is also a metric on X . We can also call this metric the discrete metric on X .

Example 2.1.8. Let (X , d) be a metric space. Then the map d : X × X → ℝ defined by

d(x, y) = d(x, y)
1 + d(x, y)

is a metric on X . Conditions (i), (ii), and (iii) of Definition 2.1.1 are easy to verify. We will
verify the triangle inequality. Let x, y, z ∈ X . Then

d(x, z) + d(z, y) = d(x, z)
1 + d(x, z)

+
d(z, y)

1 + d(z, y)

≥
d(x, z)

1 + d(x, z) + d(z, y)
+

d(z, y)
1 + d(x, z) + d(z, y)

=
d(x, z) + d(z, y)

1 + d(x, z) + d(z, y)

=
1

1 + 1
d(x,z)+d(z,y)

≥
1

1 + 1
d(x,y)

= d(x, y).

Note that d(x, y) < 1 for all x, y ∈ X .

Example 2.1.9. Let (X , d) be a metric space. Define d : X × X → ℝ by d(x, y) =
min{1, d(x, y)}. Then d is a metric on X . For the triangle inequality, let d(x, z) ≤ 1 and
d(z, y) ≤ 1. Then

d(x, y) ≤ d(x, y) ≤ d(x, z) + d(z, y) = d(x, z) + d(z, y).

Now let d(x, z) > 1. Then
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d(x, z) ≤ 1 ≤ 1 + d(z, y) = d(x, z) + d(z, y).

We can similarly check the triangle inequality for the case d(z, y) > 1. Note that d(x, y) ≤
1 for all x, y ∈ X . This metric is called the standard bounded metric corresponding to d.

Example 2.1.10. Let X be a nonempty set. Let ℱ be the collection of all finite subsets
of X . For subsets A and B of X , let A△ B = (A \ B) ∪ (B \ A). For A ∈ ℱ , let |A| denote the
number of elements in A. Define d : ℱ × ℱ → ℝ by

d(A,B) = |A△ B|.

Then d is a metric on ℱ . Conditions (i) and (iii) of Definition 2.1.1 are easy to verify. For
(ii), letA = B. Then d(A,B) = 0. Conversely, d(A,B) = 0 implies thatA\B = 0 and B\A = 0.
Therefore A = B. This proves (ii).

It is easy to verify that A△ B ⊆ (A△ C) ∪ (C △ B). Now

d(A, C) + d(C,B) = |A△ C| + |C △ B|
= 󵄨󵄨󵄨󵄨(A△ C) ∪ (C △ B)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨(A△ C) ∩ (C △ B)

󵄨󵄨󵄨󵄨
≥ 󵄨󵄨󵄨󵄨(A△ C) ∪ (C △ B)

󵄨󵄨󵄨󵄨
≥ |A△ B| = d(A,B).

This proves (iv).

Example 2.1.11. Let p be a prime. Define dp : ℤ ×ℤ→ ℝ by

dp(x, y) =
{
{
{

0 if x = y,
1

pmax{n∈ℕ|pn divides (x−y)} if x ̸= y.

Then dp is a metric on ℤ. For the triangle inequality, let x, y, z ∈ ℤ be such that x ̸= y,
y ̸= z, and x ̸= z. Let

θ(x, y) = max{n ∈ ℕ | pn divides (x − y)}.

We can assume that θ(x, z) ≤ θ(z, y). This implies that pθ(x,z) divides x − z and z − y.
Therefore pθ(x,z) divides x − y. Hence θ(x, z) ≤ θ(x, y). This shows that

dp(x, y) ≤ dp(x, z) = max{dp(x, z), dp(z, y)}.

Thus dp(x, y) ≤ dp(x, z)+dp(z, y). The other cases for the triangle inequality can be easily
proved.

Example 2.1.12. Let p be a prime. For any nonzero x ∈ ℚ, there exists a unique n ∈ ℤ
such that x = pn ab , where p does not divide a and b. Let νp(x) = n. Define dp : ℚ×ℚ→ ℝ
by
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dp(x, y) =
{
{
{

0 if x = y,
1

pνp(x−y) if x ̸= y.

Then dp is a metric on ℚ. To prove the triangle inequality, we can prove that dp(x, y) ≤
max{dp(x, z), dp(z, y)}. Note that the metric dp in Example 2.1.11 is the restriction of this
metric on ℤ.

Remark 2.1.13. The metric space (X , d) in which the condition

d(x, y) ≤ max{d(x, z), d(z, y)}

is satisfied for all x, y, z ∈ X is called an ultrametric space. In an ultrametric space, all
the triangles are isosceles. For this, we have to show that either of two distances among
x, y, z ∈ X must be equal. On the contrary, suppose that all the distances among x, y, z ∈ X
are different. We can assume that d(x, y) < d(x, z) < d(y, z), but this will contradict the
condition d(x, y) ≤ max{d(x, z), d(z, y)}.

Example 2.1.14. Let (X , d) be ametric space, and letA be a nonempty subset ofX . Define
dA : X × X → ℝ by dA(x, y) = d(x, y). Then (A, dA) is a metric space. This space is called
the metric subspace or subspace of X . The metric space in Example 2.1.11 is a metric
subspace of the metric space in Example 2.1.12.

Example 2.1.15. Let (Y , d) be a metric space, and X let be a set. Let f : X → Y be a
bijective map. We define d′ : X × X → ℝ by d′(x, y) = d(f (x), f (y)). Then d′ is a metric
on X .

Example 2.1.16. Consider the real line ℝ. Let −∞ and∞ be two different symbols not
inℝ. Let ℝ̃ = ℝ∪{−∞,∞}.We extend the order ofℝ to an order of ℝ̃ by putting−∞ <∞
and −∞ < x <∞ for all x ∈ ℝ. We can check that ℝ̃ is a totally ordered set with respect
to this order. We denote the set ℝ̃ by [−∞,∞] and ℝ by (−∞,∞). Also, we denote the
sets {x ∈ ℝ | x > a} and {x ∈ ℝ | x < a} by (a,∞) and (−∞, a), respectively. The (a,∞]
and [−∞, a) have their meanings accordingly.

Define the map f : ℝ → (−1, 1) by f (x) = x
1+|x| . We can check that f is bijective

and strictly increasing. This shows that for each a ∈ ℝ, we have f (a,∞) = (f (a), 1) and
f (−∞, a) = (−1, f (a)). By elementary analysis we can observe that limx→∞ f (x) = 1 and
limx→−∞ f (x) = −1. This prompts us to extend the map f to the map ̃f : ℝ̃ → [−1, 1]
by putting f (−∞) = −1 and f (∞) = 1. Clearly, ̃f is a bijective map. Note that [−1, 1] is a
metric subspace of ℝ. Therefore we can induce a metric d̃ on ℝ̃ defined through ̃f by
d̃(x, y) = | ̃f (x) − ̃f (y)|. This metric space is called the extended real line.

Definition 2.1.17. Let (X , d) be a metric space, and let r be a positive real number. Then
an open ball Bd(x, r) centered at x ∈ X and radius r is the subset of X consisting of all
the points that are at distance less than r from x. In other words,

Bd(x, r) = {y ∈ X | d(x, y) < r}.
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When the metric d is given, we denote the open ball by B(x, r). The open ball B(x, r)
in a metric space X is nonempty since x ∈ B(x, r). If B(x, r) is open ball centered at x,
then we also say that it is an open ball around x.

Definition 2.1.18. Let (X , d) be a metric space, and let r be a positive real number. Then
a closed ball D(x, r) centered at x ∈ X and radius r is the subset of X consisting of all the
points that are at distance less than or equal to r from x. In other words,

D(x, r) = {y ∈ X | d(x, y) ≤ r}.

Example 2.1.19. Consider ℝ with the usual metric. Then B(x, r) = (x − r, x + r).

Example 2.1.20. Consider the extended real line ℝ̃. Let us find the open ball around∞.
Let 0 < r < 1. We claim that B(∞, r) = ( 1r −1,∞]. If x ∈ (

1
r −1,∞], then x > 0 for

1
r −1 > 0.

If x ∈ B(∞, r), then x > 0 for r < 1. Let x > 0. Then

d̃(x,∞) = 󵄨󵄨󵄨󵄨 ̃f (x) − ̃f (∞)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
x

1 + x
− 1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

1
1 + x
.

This shows that x ∈ B(∞, r)⇔ x ∈ ( 1r −1,∞]. Similarly, we can observe that for 0 < r < 1,
both the sets B(−∞, r) and [−∞, 1 − 1

r ) contain the numbers x < 0. Then, for x < 0,
d̃(x,−∞) = 1

1−x . This shows that B(−∞, r) = [−∞, 1 −
1
r ).

We should not get confused with the terminology of the ball or the center. A ball
in a metric space may not look like a ball or center of our geometric imagination. For
example, consider the discrete metric space X . Then

B(x, r) = {
{x} if r ≤ 1,
X if r > 1.

Also, in an ultrametric space X , each point of an open ball is a center. To see this, let
y ∈ B(x, r), that is, d(x, y) < r, and z ∈ B(y, r), that is, d(y, z) < r. Then

d(x, z) ≤ max{d(x, y), d(y, z)} < r.

This implies that B(y, r) ⊆ B(x, r). We can similarly show that B(x, r) ⊆ B(y, r). Thus
B(x, r) = B(y, r). However, note that if B1 and B2 are two open balls with the same center
in a metric space X , then either B1 ⊆ B2 or B2 ⊆ B1.

Example 2.1.21. Consider ℝ2 with the metric d1((x1, x2), (y1, y2)) = |x1 − y1| + |x2 − y2|.
Then the open ball B((0, 0), 1) consists of all the points inside the quadrilateral bounded
by lines x + y < 1, −x + y < 1, x − y < 1, and −x − y < 1 (see Figure 2.1).
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Figure 2.1: Open ball in (ℝ2, d1).

Example 2.1.22. Consider ℝ3 with the metric

d1((x1, x2, x3), (y1, y2, y3)) = |x1 − y1| + |x2 − y2| + |x3 − y3|.

Then the open ball B((0, 0, 0), 1) consists of all the points inside the octahedron bounded
by the planes |x| + |y| + |z| < 1 (see Figure 2.2).

Figure 2.2: Open ball in (ℝ3, d1).

Proposition 2.1.23. Let X be a metric space. Let x, y ∈ X be such that x ̸= y. Then there
exist disjoint open balls centered at x and y, respectively.

Proof. First, note that r = d(x, y) > 0. Then we will show that B(x, r2 ) ∩ B(y,
r
2 ) = 0. On

the contrary, suppose that z ∈ B(x, r2 ) ∩ B(y,
r
2 ). Then d(x, z) <

r
2 and d(y, z) <

r
2 . Now by

the triangle inequality we have
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r = d(x, y) ≤ d(x, z) + d(y, z) < r
2
+
r
2
= r,

a contradiction.

Definition 2.1.24. A set A in a metric space X is called a bounded set if the set {d(x, y) |
x, y ∈ A} is a bounded set in ℝ.

Note that a set A in a metric space X is bounded if and only if A is contained in some
open ball. A metric space X is called bounded if X itself is a bounded set. In this case the
metric on X is called the boundedmetric. The diameter diam(A) of a nonempty bounded
set A in X is defined as

diam(A) = sup{d(x, y) | x, y ∈ A},

where sup T denotes the supremum or least upper bound of a subset T of ℝ. We define
the diameter of the empty set as 0.

Example 2.1.25. The sets (0, 1) and { 1n | n ∈ ℕ} are bounded sets in ℝ, whereasℕ and
{x ∈ ℝ | x > 0} are not bounded sets in ℝ. Also, note that diam(0, 1) = diam{ 1n |
n ∈ ℕ} = 1.

Example 2.1.26. The discrete metric space is bounded. The metric spaces defined in Ex-
amples 2.1.8 and 2.1.9 are bounded metric spaces.

2.2 Normed linear spaces

In this section, we define the norm on a vector space. A norm on a vector space induces
a metric structure on it. We will observe that this metric depends on the algebraic struc-
ture of the vector space.

Definition 2.2.1. Let V be a vector space over a field 𝔽, where 𝔽 is either ℝ or ℂ. Then
a map ‖ ⋅ ‖ : V → ℝ is called a norm if the following conditions are satisfied:
(i) ‖x‖ ≥ 0,
(ii) ‖x‖ = 0 if and only if x = 0,
(iii) ‖αx‖ = |α|‖x‖ for all x ∈ V and α ∈ 𝔽,
(iv) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ V .

If ‖ ⋅ ‖ is a norm on a vector space V , then we say that the pair (V , ‖ ⋅ ‖) is a normed linear
space or normed space. Let (V , ‖ ⋅ ‖) be a normed space. Define a map d : V × V → ℝ by
d(x, y) = ‖x − y‖. We can check that d is a metric on V . This is called the metric induced
by a norm. From condition (iii) of Definition 2.2.1 we observe that the metric induced by
a norm cannot be bounded. This shows that a bounded metric cannot be induced by a
norm.When a norm ‖ ⋅ ‖ on V is given, we will only say that V is a normed space. Wewill
also call condition (iv) of Definition 2.2.1 the triangle inequality. Throughout the book
the field 𝔽 will denote either ℝ or ℂ; otherwise, it will be stated explicitly.
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Let V be a normed space, let x ∈ V , and let r be a positive real number. Let A ⊆ V .
Then by the sets x + A and rA we mean the sets {x + y | y ∈ A} and {ry | y ∈ A}. Let d be
the metric on V induced by the norm. Now

B(x, r) = {y ∈ V | d(x, y) < r} = {y ∈ V | ‖y − x‖ < r}

= {x + z ∈ V | ‖z‖ < r} = {x + rw ∈ V | ‖w‖ < 1}

= x + rB(0, 1).

Example 2.2.2. Wehave shown inExample 2.1.3 thatℝn is ametric spacewith themetric
dp (p ≥ 1). In fact, this metric is induced by the norm ‖x‖p = dp(x, 0), where x ∈ ℝ

n. Now
we show that a similar norm can be defined on ℂn.

Let z = x + iy ∈ ℂ. Then |z| = √x2 + y2 defines a norm on ℂ. For the triangle
inequality, observe that for z1, z2 ∈ ℂ, we have

|z1 + z2|
2 = (z1 + z2)(z1 + z2) = z1z1 + z1z2 + z2z1 + z2z2
= |z1|

2 + 2 Re(z1z2) + |z2|
2

≤ |z1|
2 + 2|z1||z2| + |z2|

2

= (|z1| + |z2|)
2,

where z and Re(z) is the complex conjugate and the real part of a complex number z.
This shows that |z1 + z2| ≤ |z1| + |z2|. The rest of the conditions are easy to verify.

Let p > 1 be a real number. Let z = (z1, z2, . . . , zn) ∈ ℂ
n. Define ‖z‖p = (∑

n
i=1 |zi|

p)
1
p .

We will only show the triangle inequality. For the proof, we will adopt the samemethod
as in Example 2.1.3. Recall that ϕ : ℝn → ℝ is called a convex map if for all x, y ∈ ℝn and
0 ≤ α ≤ 1, we have

ϕ(αx + (1 − α)y) ≤ αϕ(x) + (1 − α)ϕ(y).

From the multivariate calculus we have the following:

Proposition 2.2.3. A twice differentiable map f : ℝn → ℝ is convex if and only if the
Hessian matrix of f is positive definite.

Now identifyingℂwithℝ2, we define themap f : ℝ2 → ℝ by f (z) = |z|p = (x2+y2)
p
2 .

Note that for p = 1, by the triangle inequality as observed above, f is convex. Let p > 1.
Observe that f is twice differentiable. The Hessian matrix of f is as follows:

(
𝜕2f
𝜕x2

𝜕2f
𝜕x𝜕y

𝜕2f
𝜕y𝜕x

𝜕2f
𝜕y2
) .

Note that for the given map f ,
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𝜕2f
𝜕x2
≥ 0 and 𝜕

2f
𝜕x2
𝜕2f
𝜕y2
−
𝜕2f
𝜕x𝜕y
𝜕2f
𝜕y𝜕x
≥ 0.

This shows that the Hessian matrix is positive definite. Therefore, by Proposition 2.2.3,
f is convex. Now by a similar argument as in Example 2.1.3 we have

‖z1 + z2‖p ≤ ‖z1‖p + ‖z2‖p. (2.4)

Inequality (2.4) is called the Minkowski inequality.

Example 2.2.4. Define ‖ ⋅ ‖∞ : 𝔽
n → ℝ by ‖x‖∞ = max{|xi| | 1 ≤ i ≤ n} for x =

(x1, . . . , xn) ∈ 𝔽
n. Then ‖ ⋅ ‖∞ is a norm on 𝔽n.

Definition 2.2.5. Let X be a nonempty set. A map f : ℕ → X is called a sequence in X .
The image f (n) of an element n ∈ ℕ is called the nth term of the sequence f . If f (n) = xn,
then we denote the sequence f by (xn) or

x1, x2, . . . , xn, . . . .

Example 2.2.6. Let p > 1. Consider the set X of sequences x = (xn) in 𝔽 such that
∑∞n=1 |xn|

p < ∞. Then X is a vector space with pointwise addition and pointwise scalar
multiplication. Define ‖ ⋅ ‖p : X → ℝ by ‖x‖p = (∑

∞
n=1 |xn|

p)
1
p . Then ‖ ⋅ ‖p is a norm on X .

We will only prove the triangle inequality. Let x, y ∈ X . Then, for all n ∈ ℕ, we have

(
n
∑
k=1
|xk + yk |

p)

1
p

≤ (
n
∑
k=1
|xk |

p)

1
p

+ (
n
∑
k=1
|yk |

p)

1
p

≤ (
∞
∑
k=1
|xk |

p)

1
p

+ (
∞
∑
k=1
|yk |

p)

1
p

.

Therefore

(
∞
∑
k=1
|xk + yk |

p)

1
p

≤ (
∞
∑
k=1
|xk |

p)

1
p

+ (
∞
∑
k=1
|yk |

p)

1
p

.

This normed space is denoted by ℓp.

Example 2.2.7. Let X be the set of sequences x = (xn) in 𝔽 such that sup{|xk | | k ∈ ℕ} <
∞. Define ‖ ⋅ ‖∞ : X → ℝ by ‖x‖∞ = sup{|xk | | k ∈ ℕ}. Then ‖ ⋅ ‖∞ is a norm on X . This
normed space is denoted by ℓ∞.

Example 2.2.8. Let C𝔽[a, b] denote the set of all continuous maps from [a, b] to 𝔽. Then
C𝔽[a, b] is a vector space with the following operations:

(f + g)(x) = f (x) + g(x), (αf )(x) = αf (x),
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where f , g ∈ C𝔽[a, b] and α ∈ 𝔽. Define ‖ ⋅ ‖ : C𝔽[a, b]→ ℝ by ‖f ‖ = ∫
b
a |f (t)|dt. Then ‖ ⋅ ‖

is a norm on C𝔽[a, b]. We will only prove condition (ii). If f = 0, then clearly ‖f ‖ = 0. For
the converse, suppose f ̸= 0. Since f is continuous, there exist c, d ∈ [a, b]with c < d and
δ > 0 such that |f (t)| ≥ 0 for all t ∈ [c, d]. This implies that

‖f ‖ ≥
d

∫
c

≥ (d − c)δ > 0.

Example 2.2.9. Define ‖ ⋅ ‖∞ : C𝔽[a, b] → ℝ by ‖f ‖∞ = sup{|f (t)| | t ∈ [a, b]}. Then
‖ ⋅ ‖∞ is a norm on C𝔽[a, b]. We will write C[a, b] instead of C𝔽[a, b] when the field 𝔽 is
understood.

Example 2.2.10. We have seen examples of a few normed spaces. In fact, we can con-
struct a norm on any vector space over 𝔽. This follows from the fact that every vector
space V has a basis B = {va | a ∈ ℐ}. Each nonzero element x in V can be written as
x = αi1vi1 + αi2vi2 + ⋅ ⋅ ⋅ + αinvir , where αir ∈ 𝔽 and vir ∈ B. Define ‖x‖ = ∑

n
r=1 |αir |. Then

‖ ⋅ ‖ is a norm on V . We will consider the triangle inequality. We will not give a complete
proof of it, but we will mention by an example how we can proceed for a general proof.

Let x, y ∈ V . We can assume that both of x and y are nonzero. Suppose x = αi1vi1 +
αi2vi2 +αi3vi3 +αi4vi4 and y = βj1vj1 +βj2vj2 +βj3vj3 . First, suppose that no vir is equal to any
of vjs . Then

x + y = αi1vi1 + αi2vi2 + αi3vi3 + αi4vi4 + βj1vj1 + βj2vj2 + βj3vj3 .

Note that this is a unique representation of x + y as a linear combination of elements
of B. Then

‖x + y‖ =
4
∑
r=1
|αir | +

3
∑
s=1
|βjs | = ‖x‖ + ‖y‖.

Now suppose that vi3 = vj2 , vi4 = vj3 , and other are distinct. Then

x + y = (αi1vi1 + αi2vi2 ) + βj1vj1 + (αi3 + βj2 )vi3 + (αi4 + βj3 )vi4 .

This shows that

‖x + y‖ = |αi1 | + |αi2 | + |βj1 | + |αi1 + βj1 | + |αi4 + βj1 |

≤ |αi1 | + |αi2 | + |βj1 | + |αi1 | + |βj1 | + |αi4 | + |βj1 |

= ‖x‖ + ‖y‖.

Themetric induced by a norm satisfies nice properties because of its algebraic struc-
ture compatible with norm. For example, we have the following:
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Proposition 2.2.11. Let V be a normed space, and let x, y ∈ V. If B(x, r) ⊆ B(y, s), then
r ≤ s. Moreover, if x ̸= y, then r < s.

Proof. If x = y, then clearly r ≤ s. Assume that x ̸= y. Let 0 ≤ t < r. Consider z = x+t (x−y)‖x−y‖ .
Then ‖z − x‖ = t < r. This shows that z ∈ B(x, r). This implies that z ∈ B(y, s). Therefore
‖z − y‖ < s. Putting the value of z, we get

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(x − y) + t (x − y)

‖x − y‖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
< s.

In other words,

‖x − y‖(1 + t
‖x − y‖
) = ‖x − y‖ + t < s.

Hence t < s. This shows that whenever t < r, we have t < s. Thus r ≤ s.
Now assume that x ̸= y. Then ‖x − y‖ ̸= 0. On the contrary, assume that r = s. Since

x ∈ B(x, r), ‖x − y‖ < r. Choose t ∈ ℝ such that

r
‖x − y‖
− 1 < t < r

‖x − y‖
.

Let z = x − t(y − x). Then ‖z − x‖ < r and ‖z − y‖ > r. This shows that z ∈ B(x, r) but
z ̸∈ B(y, r). This is a contradiction.

Corollary 2.2.12. Let V be a normed space, and let x, y ∈ V. Then B(x, r) = B(y, s) if and
only if x = y and r = s.

Proof. Suppose that B(x, r) = B(y, s). If the statement does not hold, then either x ̸= y or
r ̸= s. If x ̸= y, then by Proposition 2.2.11 we have r < s and s < r, which is not possible.
Now suppose that r ̸= s. Further, assume that r < s. Let z = x + t (x−y)‖x−y‖ , where r < t < s.
Then z ∈ B(y, s), but z ̸∈ B(x, r). This is a contradiction.

Let us see another property of the norm on a vector space V . A nonempty subset A
of V is called convex if αx + (1−α)y ∈ A for all x, y ∈ A and 0 ≤ α ≤ 1. It is easy to observe
that a unit open ball B(0, 1) = {x ∈ V | ‖x‖ < 1} is convex. Indeed, its converse is also
true in the following sense.

Proposition 2.2.13. Let ν : V → ℝ be a map satisfying the following conditions:
(i) ν(x) ≥ 0,
(ii) ν(x) = 0 if and only if x = 0,
(iii) ν(αx) = |α|ν(x).

Suppose that the set B = {x ∈ V | ν(x) < 1} is convex. Then the map ν is a norm on V.
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Proof. To show that ν is a norm on V , we have to show that ν satisfies the triangle in-
equality. If any of x or y is zero, then it is clearly satisfied. Suppose that x ̸= 0 and y ̸= 0.
Let u = x

tν(x) and v =
y

tν(y) , where t > 1. Then ν(u) = ν(v) < 1. Since B is convex,

ν( ν(x)
ν(x) + ν(y)

u + ν(x)
ν(y) + ν(y)

v) < 1.

This implies that ν(x+y) < t(ν(x)+ν(y)). Since t > 1 is arbitrary, ν(x+y) ≤ ν(x)+ν(y).

Let V1 and V2 be normed spaces over the field 𝔽. Let T : V1 → V2 be a linear
transformation such that there exists a positive real number k such that ‖T(x)‖ ≤ k‖x‖
for all x ∈ V1. Let us collect all such linear transformations in a set B(V1,V2). Define
‖ ⋅ ‖ : B(V1,V2)→ ℝ by

‖T‖ = inf{k | 󵄩󵄩󵄩󵄩T(x)
󵄩󵄩󵄩󵄩 ≤ k‖x‖ for all x ∈ V1}.

We can check that ‖ ⋅ ‖ is a norm on B(V1,V2). Note that ‖T(x)‖ ≤ ‖T‖‖x‖ for all x ∈ V1.

Proposition 2.2.14. Let T ∈ B(V1,V2). Then

‖T‖ = sup{󵄩󵄩󵄩󵄩T(x)
󵄩󵄩󵄩󵄩 | ‖x‖ ≤ 1}.

Proof. If ‖x‖ ≤ 1, then ‖T(x)‖ ≤ ‖T‖‖x‖ ≤ ‖T‖. This implies that

sup{󵄩󵄩󵄩󵄩T(x)
󵄩󵄩󵄩󵄩 | ‖x‖ ≤ 1} ≤ ‖T‖.

Let ϵ > 0. Then there is y ̸= 0 such that

󵄩󵄩󵄩󵄩T(y)
󵄩󵄩󵄩󵄩 > (‖T‖ − ϵ)‖y‖.

Let z = y
‖y‖ . Then we have

󵄩󵄩󵄩󵄩T(z)
󵄩󵄩󵄩󵄩 =
‖T(y)‖
‖y‖
> ‖T‖ − ϵ.

This implies that

sup{󵄩󵄩󵄩󵄩T(x)
󵄩󵄩󵄩󵄩 | ‖x‖ ≤ 1} ≥

󵄩󵄩󵄩󵄩T(z)
󵄩󵄩󵄩󵄩 > ‖T‖ − ϵ.

Hence

sup{󵄩󵄩󵄩󵄩T(x)
󵄩󵄩󵄩󵄩 | ‖x‖ ≤ 1} ≥ ‖T‖.
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Remark 2.2.15. The linear transformation T : V1 → V2 satisfying the above condition is
called a bounded linear transformation. We are avoiding this terminology here because
this is different from a boundedmap between themetric spaces X and Y . A map f : X →
Y is called a bounded map if the image set Im f is a bounded set in Y . Observe that the
identity map I : ℝ→ ℝ satisfies the above condition but is not a bounded map.

Definition 2.2.16. Let V be vector space over a field 𝔽. Then a map ⟨⋅, ⋅⟩ : V × V → 𝔽
is called an inner product if for all x, y, z ∈ V and α, β ∈ F , the following conditions are
satisfied:
(i) ⟨x, y⟩ ∈ ℝ and ⟨x, y⟩ ≥ 0,
(ii) ⟨x, x⟩ = 0 if and only if x = 0,
(iii) ⟨αx + βy, z⟩ = α⟨x, z⟩ + β⟨y, z⟩,
(iv) ⟨x, y⟩ = ⟨y, x⟩.

If ⟨⋅, ⋅⟩ is an inner product on a vector space V , then we say that the pair (V , ⟨⋅, ⋅⟩) is an
inner product space. When an inner product is given on V , we will only say that V is an
inner product space.

Example 2.2.17. Define ⟨⋅, ⋅⟩ : 𝔽n × 𝔽n → 𝔽 by ⟨x, y⟩ = ∑nk=1 xkyk , where x = (x1, . . . , xn)
and y = (y1, . . . , yn). Then ⟨⋅, ⋅⟩ is an inner product on 𝔽

n. This inner product is called the
standard or usual inner product on 𝔽n.

Let V be an inner product space. Define a map ‖ ⋅ ‖ : V → ℝ by ‖x‖ = +√⟨x, x⟩. We
will observe that ‖ ⋅ ‖ is a norm on V . Clearly, ‖ ⋅ ‖ satisfies the first three conditions of
the norm. To prove the triangle inequality, we need the following:

Proposition 2.2.18 (Cauchy–Schwarz inequality). Let V be an inner product space, and let
‖ ⋅ ‖ be the map as defined above. Then, for all x, y ∈ V,

󵄨󵄨󵄨󵄨⟨x, y⟩
󵄨󵄨󵄨󵄨 ≤ ‖x‖‖y‖.

The equality holds if and only if one of x or y is a scalar multiple of the other.

Proof. If any of x or y is zero, then the above inequality is satisfied. Suppose that x ̸= 0
and y ̸= 0. Write

x = ⟨x, y⟩
‖y‖2

y + z,

where z = x − ⟨x,y⟩‖y‖2 y. Note that

⟨
⟨x, y⟩
‖y‖2

y, z⟩ = 0.

Now
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‖x‖2 = ⟨x, x⟩

= ⟨
⟨x, y⟩
‖y‖2

y + z, ⟨x, y⟩
‖y‖2

y + z⟩

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨x, y⟩
‖y‖2

y
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+ ‖z‖2

=
|⟨x, y⟩|2

‖y‖2
+ ‖z‖2

≥
|⟨x, y⟩|2

‖y‖2
.

Therefore

󵄨󵄨󵄨󵄨⟨x, y⟩
󵄨󵄨󵄨󵄨 ≤ ‖x‖‖y‖.

Note that the equality holds if and only if z = 0. This equivalently means that

x = ⟨x, y⟩
‖y‖2

y.

Now observe that

‖x + y‖2 = ⟨x + y, x + y⟩ = ‖x‖2 + 2 Re⟨x, y⟩ + ‖y‖2

≤ ‖x‖2 + 2󵄨󵄨󵄨󵄨⟨x, y⟩
󵄨󵄨󵄨󵄨 + ‖y‖

2

≤ ‖x‖2 + 2‖x‖‖y‖ + ‖y‖2

= (‖x‖ + ‖y‖)2.

Therefore ‖x + y‖ ≤ ‖x‖ + ‖y‖. Thus an inner product induces a norm on V , but a norm
may be not induced by an inner product. Observe that if V is an inner product space and
‖ ⋅ ‖ is a norm induced by the inner product on V , then for all x, y ∈ V , we have

‖x + y‖2 + ‖x − y‖2 = (‖x‖2 + ‖y‖2).

This identity is called the parallelogram identity.
Take x = (1, 0, . . . , 0, . . . ) and y = (0, 1, . . . , 0, . . . ) in the space ℓp. We can see that the

parallelogram identity is not satisfied if p ̸= 2. This shows that the norm on the space ℓp
(p ̸= 2) is not induced by an inner product.

2.3 Metric-preserving maps

Let us revisit Examples 2.1.8 and 2.1.9. Let d be a metric on a set X . Then by condition (i)
of Definition 2.1.1, d is a map from X ×X to [0,∞). Consider the map f : [0,∞)→ [0,∞)



2.3 Metric-preserving maps � 41

defined by f (x) = x
1+x . By Example 2.1.8 the composition f ∘ d is a metric on X . We can

similarly deal with Example 2.1.9.

Definition 2.3.1. A map f : [0,∞) → [0,∞) is called a metric-preserving map if f ∘ d is
a metric for all metric spaces (X , d).

Example 2.3.2. The map f : [0,∞) → [0,∞) defined by f (x) = x2 is not a metric-
preserving map. Consider the usual metric d on ℝ. Then

(f ∘ d)(1, 3) > (f ∘ d)(1, 2) + (f ∘ d)(2, 3).

Example 2.3.3. Define the map f : [0,∞)→ [0,∞) by

f (x) = {
0 if x = 0,
1 if x > 0.

Then f ∘ d is the discrete metric.

Definition 2.3.4. Amap f : [0,∞)→ [0,∞) is called subadditive if f (x + y) ≤ f (x)+ f (y)
for all x, y ∈ [0,∞).

Proposition 2.3.5. Let f : [0,∞) → [0,∞) be a metric-preserving map. Then f is subad-
ditive.

Proof. Let d be the usual metric on ℝ. Let x, y, z ∈ [0,∞). Since f is a metric-preserving
map,

f (x + y) = (f ∘ d)(0, x + y)

≤ (f ∘ d)(0, x) + f ∘ d(x, x + y)

= f (x) + f (y).

Definition 2.3.6. A map f : [0,∞)→ [0,∞) is called amenable if f −1{0} = {0}.

Proposition 2.3.7. Let f : [0,∞) → [0,∞) be a metric-preserving map. Then f is
amenable.

Proof. Note that if f (0) ̸= 0, then f ∘ d is not a metric. Also, suppose there is a > 0 such
that f (a) = 0. Take the usual metric d on ℝ. Then (f ∘ d)(0, a) = f (a) = 0, but a ̸= 0. This
shows that f ∘ d is not a metric.

It may happen that f : [0,∞) → [0,∞) is a subadditive and amenable but not a
metric-preserving map. For example, we will see later that f (x) = x

1+x2 is a subadditive
and amenable but not a metric-preserving map. We have a sufficient condition for f to
be a metric-preserving map.
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Proposition 2.3.8. Let f : [0,∞) → [0,∞) be a subadditive, amenable, and increasing
map. Then f is a metric-preserving map.

Proof. Let (X , d) be a metric space, and let x, y, z ∈ X . We will only prove the triangle
inequality for f ∘ d. Note that

d(x, y) ≤ d(x, z) + d(z, y).

Since f is increasing,

f (d(x, y)) ≤ f (d(x, z) + d(z, y)).

Since f is subbaditive,

f (d(x, z) + d(z, y)) ≤ f (d(x, z)) + f (d(z, y)).

This shows that f ∘ d satisfies the triangle inequality.

Definition 2.3.9. Let a, b, c ∈ [0,∞). Then the triple (a, b, c) is called a triangle triple if
a ≤ b + c, b ≤ a + c, and c ≤ a + b.

Observe that (a, b, c) is a triangle triple if and only if |a − b| ≤ c ≤ a + b.

Proposition 2.3.10 (Borsik and Dobos). Let f : [0,∞) → [0,∞) be an amenable map.
Then f is a metric-preserving map if and only if (f (a), f (b), f (c)) is a triangle triple for all
triangle triples (a, b, c).

Proof. Let (a, b, c) be a triangle triple. Let d be the usual metric on ℝ2. Then there are
x, y, z ∈ ℝ such that d(x, y) = a, d(y, z) = b, and d(x, z) = c. Since f is metric preserving,
(f (a), f (b), f (c)) is a triangle triple.

Conversely, suppose that (f (a), f (b), f (c)) is a triangle triple for all triangle triples
(a, b, c). Let (X , d) be ametric space. Since (d(x, y), d(y, z), d(x, z)) is a triangle triple, f ∘d
satisfies the triangle inequality. We can easily check that f ∘ d satisfies the other condi-
tions of a metric.

Note 2.3.11. Let (a, b, c) be a triangle triple with a > 0, and let d be the usual metric
on ℝ2. Let x = ( a2 , 0), y = (−

a
2 , 0), and z = (u, v), where u =

b2−c2
2a , and v is given by

x2 + a2
4 + ax + y

2 = b2. Check that for x, y, z ∈ ℝ2, we have d(x, y) = a, d(y, z) = b, and
d(x, z) = c.

Proposition 2.3.12 (Sreenivasan and Terpe). Let f : [0,∞) → [0,∞) be an amenable
map. Then f is a metric-preserving map if and only if f (a) ≤ f (b) + f (c) for all triangle
triples (a, b, c).

Proof. Suppose that f is a metric preserving map. Let (a, b, c) be a triangle triple. Let d
be the usual metric on ℝ2. Then there are x, y, z ∈ ℝ2 such that d(x, y) = a, d(y, z) = b,
and d(x, z) = c. Since f is metric preserving,
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f (a) = f (d(x, y)) ≤ f (d(x, z)) + f (d(z, y)) = f (b) + f (c).

By similar arguments as in the proof of Proposition 2.3.10, the converse follows.

Proposition 2.3.13. Let f : [0,∞)→ [0,∞) be a metric-preserving map. Then the follow-
ing statements are equivalent:
(i) f is continuous,
(ii) f is continuous at 0,
(iii) for each ϵ > 0, there is x > 0 such that f (x) < ϵ.

Proof. We can easily observe that (i)⇒ (ii) and (ii)⇒ (iii). We will prove (iii)⇒ (i).
Suppose (iii) holds. Let a ∈ [0,∞) and ϵ > 0. By (iii) there is h > 0 such that f (h) < ϵ.

Note that (h, a, a+h) is a triangle triple. Therefore (f (h), f (a), f (a+h)) is a triangle triple.
This implies that

󵄨󵄨󵄨󵄨f (a + h) − f (a)
󵄨󵄨󵄨󵄨 ≤ f (h) < ϵ.

This shows that f is continuous at a. Since a ∈ [0,∞) is arbitrary, f is continuous.

Proposition 2.3.14. Let f : [0,∞) → [0,∞) be a metric-preserving map. Then, for each
δ > 0, there is ϵ > 0 such that

x ≥ δ ⇒ f (x) ≥ ϵ.

Proof. On the contrary, assume that there is δ > 0 such that for each ϵ > 0,

x ≥ δ ⇒ f (x) < ϵ.

Choose a ≥ δ > 0 such that f (a) < f (δ)
2 . Note that (a, a, δ) is a triangle triple but

(f (a), f (a), f (δ)) is not. This is a contradiction.

Corollary 2.3.15. Let f : [0,∞) → [0,∞) be a metric-preserving map. Then
limx→∞ f (x) ̸= 0.

Observe that limx→∞
x

1+x2 = 0. This shows that f (x) =
x

1+x2 is not ametric-preserving
map.

Proposition 2.3.16. Let f : [0,∞) → [0,∞) be amenable such that for all x > 0, v ≤
f (x) ≤ 2v for some v > 0. Then f is a metric-preserving map.

Proof. Let v > 0 be such that v ≤ f (x) ≤ 2v for all x > 0. Let (a, b, c) be a triangle triple.
We will show that f (a) ≤ f (b) + f (c). If any one of a, b, or c is zero, then it is clearly
satisfied. Suppose that a ̸= 0, b ̸= 0, and c ̸= 0. Then

f (a) ≤ 2v = v + v ≤ f (b) + f (c).

By Proposition 2.3.12, f is a metric-preserving map.
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Example 2.3.17. Define the map f : [0,∞)→ [0,∞) by

f (x) =
{{{
{{{
{

0 if x = 0,
1 if x ∈ (0,∞) ∩ℚ,
2 if x ∈ (0,∞) ∩ (ℝ \ℚ).

By Proposition 2.3.16, f is a metric-preserving map. Note that f is discontinuous at each
point of [0,∞). Also, note that f is not increasing.

2.4 Open and closed sets

Let us recall the definition of continuity of a map f : ℝ → ℝ from elementary calculus.
We note that the continuity depends on the open intervals. We would like to general-
ize the notion of an open interval to the so-called open sets and try to get a notion of
continuity in the next chapter, which does not depend on the distance.

Definition 2.4.1. Let A be a set in a metric space X . Then a point x ∈ X is called an
interior point of A if there is a positive real number r such that B(x, r) ⊆ A.

We denote the set of all interior points of A by A∘ or IntX A. When the metric space
X is given, we will denote it by IntA. Note that if A is nonempty and x ∈ X is an interior
point of A, then x ∈ A.

Definition 2.4.2. Let A be a set in a metric space X . Then a point x ∈ X is called an
exterior point of A if there is a positive real number r such that B(x, r) ⊆ X \ A.

We denote the set of all exterior points of A by ExtX A or ExtA.

Definition 2.4.3. Let A be a set in ametric space X . Then a point x ∈ X is called a bound-
ary point of A if it is neither an interior point nor an exterior point of A.

We denote the set of all boundary points of A by BdX A or BdA. Note that if x ∈ X is
a boundary point of A, then for all r > 0,

B(x, r) ∩ A ̸= 0 and B(x, r) ∩ (X \ A) ̸= 0.

Note that for any set A in a metric space X , IntA, ExtA, and BdA forms a partition of X .
Also, note that IntA = Ext(X \ A), ExtA = Int(X \ A), and BdA = Bd(X \ A).

Example 2.4.4. Consider a closed interval [a, b] in the real line. Let x ∈ (a, b). Let r =
min{|x − a|, |x − b|}. Then B(x, r) = (x − r, x + r) ⊆ [a, b]. Also, note that no point of
ℝ \ (a, b) can be an interior point of [a, b]. This shows that Int[a, b] = (a, b). We can
similarly observe that Ext[a, b] = (−∞, a) ∪ (b,∞) and Bd[a, b] = {a, b}.
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Example 2.4.5. Consider the set ℚ in the real line. Note that any open interval around
a point contains irrational numbers. This implies that Intℚ = 0. We can similarly show
that Intℝ \ℚ = Extℚ = Extℝ \ℚ = 0. Also, observe that Bdℚ = Bdℝ \ℚ = ℝ.

Definition 2.4.6. A set in a metric space X is called an open set if every point of A is an
interior point of A.

Consider the Euclidean space ℝn. Let a1, . . . , an be arbitrary but fixed positive real
numbers. We can check that

{(x1, . . . , xn) ∈ ℝ
n | |xi| < ai}

is an open set in ℝn. The same situation may not be true in an infinite-dimensional
normed space.

Proposition 2.4.7. Let (an) be an arbitrary but fixed sequence of positive real numbers.
Then the set

U = {(xn) ∈ ℓ2 | |xi| < ai for all i}

is an open set in ℓ2 if and only if

inf{an | n ∈ ℕ} > 0.

Proof. Suppose thatU is an open set in ℓ2. Since a1 > 0, there is ϵ > 0 such that a1 > ϵ > 0.
Then

x = (xn) = (a1 − ϵ, 0, 0, . . . ) ∈ U .

Since U is an open set, there is δ > 0 such that

B(x, δ) ⊆ U .

Let r = min{ϵ, δ2 }. Then

D(x, r) ⊆ B(x, δ) ⊆ U .

Letm ≥ 2. Consider the sequence y = (yn) defined by

yn =
{{{
{{{
{

a1 − ϵ if n = 1,
r if n = m,
0 otherwise.

Note that y ∈ D(x, r) ⊆ U . This implies that r < am. Observe that a1 > ϵ ≥ r. Sincem ≥ 2
is arbitrary, an ≥ r for all n ∈ ℕ. This shows that inf{an | n ∈ ℕ} ≥ r > 0.
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Conversely, suppose that inf{an | n ∈ ℕ} > 0. Then there is s > 0 such that an > s
for all n ∈ ℕ. Let x = (xn) ∈ U . We will show that x is an interior point of U .

Since ∑∞n=1 |xn|
2 <∞, there is a positive integer k such that

∞
∑

n=k+1
|xn|

2 <
s2

4
.

Let r = min{ s2 , a1 − |x1|, . . . , ak − |xk |}. Since x ∈ U , r > 0. Let y = (yn) ∈ B(x, r). Then
‖y − x‖ < r. For 1 ≤ n ≤ k, we have

|yn| ≤ |yn − xn| + |xn|

≤ ‖y − x‖ + |xn|

< r + |xn|

≤ an − |xn| + |xn|

= an.

Let x′ = (xn+k) and y
′ = (yn+k). Then

󵄩󵄩󵄩󵄩y
′󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩y
′ − x′󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩x
′󵄩󵄩󵄩󵄩

≤ ‖y − x‖ + (
∞
∑

n=k+1
|xn|

2)

1
2

< r + s
2

≤ s.

This implies that for n ≥ k + 1, we have

|yn| ≤
󵄩󵄩󵄩󵄩y
′󵄩󵄩󵄩󵄩

< s

< an.

Therefore |yn| < an for all n ∈ ℕ. This shows that y = (yn) ∈ U . Since y ∈ B(x, r) is
arbitrary, B(x, r) ⊆ U . Hence x is an interior point of U . Since x ∈ U is arbitrary, U is
open.

Let A be a set in a metric space X . Note that IntA is the largest open set contained
in A. In other words,

IntA =⋃{Uα | Uα is open in X contained in A}.
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Also, A is open in X if and only if IntA = A. Observe that if A ⊆ B, then IntA ⊆ IntB.
For this, note that IntA ⊆ A ⊆ B. Since IntB is the largest open set contained in B,
IntA ⊆ IntB.

Proposition 2.4.8. Let {Aα | α ∈ ℐ} be a family of sets in a metric space. Then
(i) Int(⋂α∈ℐ Aα) ⊆ ⋂α∈ℐ IntAα;
(ii) if ℐ is finite, then Int(⋂α∈ℐ Aα) = ⋂α∈ℐ IntAα;
(iii) ⋃α∈ℐ IntAα ⊆ Int(⋃α∈ℐ Aα).

Proof. (i) Note that⋂α∈ℐ Aα ⊆ Aα for all α ∈ ℐ . Then

Int(⋂
α∈ℐ

Aα) ⊆ IntAα for all α ∈ ℐ.

This implies that

Int(⋂
α∈ℐ

Aα) ⊆ ⋂
α∈ℐ

IntAα.

(ii) Without loss of generality, assume that ℐ = {1, . . . , n}. Let U = ⋂nα=1 IntAα. Note that
U is open. Since IntAα ⊆ Aα,

U =
n
⋂
α=1

IntAα ⊆
n
⋂
α=1

Aα.

Since for any set B, IntB is the largest open set contained in B,

n
⋂
α=1

IntAα ⊆ Int(
n
⋂
α=1

Aα).

(iii) Left as an exercise.

Remark 2.4.9.
(i) If ℐ is not a finite set, then the equality in Proposition 2.4.8(i) need not hold. For

example, for all n ∈ ℕ, consider the sets An = (−
1
n ,

1
n ) in the real line. Then

⋂
n∈ℕ

IntAn = {0} and Int(⋂
n∈ℕ

An) = 0.

(ii) Consider the singletons {a} in the real line. Note that Int{a} = 0 and ⋃a∈ℝ{a} = ℝ.
This implies that

0 = ⋃
a∈ℝ

Int{a} ⊆ Int ⋃
a∈ℝ
{a} = ℝ.

This shows that the equality in Proposition 2.4.8(iii) need not hold. This is even not
true for a finite union. For example,



48 � 2 Metric spaces

0 = Intℚ ∪ Intℝ \ℚ ⊆ Int(ℚ ∪ ℝ \ℚ) = ℝ.

Proposition 2.4.10. An open ball in a metric space is an open set.

Proof. Consider an open ball B(x, r) in a metric space X . Let y ∈ B(x, r). If y = x, then
B(y, r) ⊆ B(x, r). Now suppose that y ̸= x. Then s = d(x, y) > 0. Let ϵ = min{s, r − s}. We
claim that B(y, ϵ) ⊆ B(x, r). For this, let z ∈ B(y, ϵ). This implies that d(y, z) < ϵ. Then

d(z, x) ≤ d(z, y) + d(y, x)

< ϵ + s

≤ r − s + s

= r.

Hence z ∈ B(x, r).

Definition 2.4.11. A set A in a metric space X is called a closed set if X \ A is open in X .

Example 2.4.12. Each singleton set in a metric space X is a closed set. For this, let x ∈ X .
Let y ∈ X be such that y ̸= x. Then r = d(x, y) > 0. Note that x ̸∈ B(y, r). This equivalently
means that B(y, r) ⊆ X \ {x}. Hence X \ {x} is open in X .

Proposition 2.4.13. A closed ball in a metric space is a closed set.

Proof. Consider a closed ball D(x, r) in a metric space X . We will prove that X \ D(x, r)
is open in X . If D(X , r) = X , then X \ D(x, r) = 0. Since 0 contains no point, 0 is open.
Now assume that D(X , r) ̸= X . Let y ∈ X \ D(x, r). Then s = d(x, y) > 0. We claim that
B(y, s − r) ⊆ X \ D(x, r). For this, let z ∈ B(y, s − r). This implies that d(y, z) < s − r. Then

s = d(x, y) ≤ d(x, z) + d(z, y)

< d(x, z) + s − r.

Therefore d(x, z) > r. Hence z ∈ X \ D(x, r).

The interior of a closed ball in a metric space need not be an open ball. For this,
consider the following example.

Example 2.4.14. Let X be the discrete metric space containing at least two elements.
Since D(x, 1) = X for each x ∈ X , IntD(x, 1) = X . Note that B(x, 1) = {x}.

Proposition 2.4.15. Let V be a normed space, and let x ∈ V. Then IntD(x, r) = B(x, r) for
all r > 0.

Proof. Since B(x, r) ⊆ D(x, r), B(x, r) ⊆ IntD(x, r). For the converse, let y ̸∈ B(x, r). Then
‖x − y‖ ≥ r. If ‖x − y‖ > r, then y ̸∈ D(x, r). This implies that y ̸∈ IntD(x, r). Let ‖x − y‖ = r.
For each ϵ > 0, consider an open ball B(y, ϵ) around y. Let
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z = y + ϵ
2
y − x
‖x − y‖
.

Then ‖z − y‖ = ϵ
2 < ϵ, but ‖x − z‖ = r +

ϵ
2 > r. This shows that y ̸∈ IntD(x, r).

Now we prove an important property of open sets in a metric space, which will
prompt us to define a topology.

Theorem 2.4.16. Let X be a metric space. Then
(i) 0 and X are open sets;
(ii) if {Uα | α ∈ ℐ} is a family of open sets of X, then⋃α∈ℐ Uα is open in X;
(iii) if U1,U2, . . . ,Un are open sets of X, then U1 ∩ U2 ∩ ⋅ ⋅ ⋅ ∩ Un is open in X.

Proof. (i) We have already seen that 0 is open in X . Since every open ball B(x, r) around
each x ∈ X is contained in X , X is open in X .

(ii) Let x ∈ ⋃α∈ℐ Uα. Then, x ∈ Uβ for some β ∈ ℐ . Since Uβ is open, there is r > 0
such that

B(x, r) ⊆ Uβ ⊆ ⋃
α∈ℐ

Uα.

This shows that⋃α∈ℐ Uα is open in X .
(iii) It is sufficient to prove that U1 ∩ U2 is open in X . Let x ∈ U1 ∩ U2. Since U1 and

U2 are open, there are ri > 0, i = 1, 2, such that B(x, ri) ⊆ Ui. Let r = min{r1, r2}. Then
B(x, r) ⊆ U1 ∩ U2.

Example 2.4.17. Let X be the discrete metric space. Since each singletons are open balls
for suitable radius, the singletons are open sets in the discrete metric space. This shows
that each set in the discretemetric space is open. This implies that each set in the discrete
metric space is a closed set.

Example 2.4.18. Consider the set ℤ of integers in the real line. Since

ℝ \ℤ = ⋃
n∈ℤ
(n, n + 1),

ℤ is closed in ℝ.

Example 2.4.19. Let a ∈ ℝ. Since (a,∞) = ⋃n∈ℕ(a, n), (a,∞) is open in ℝ. Similarly,
(−∞, a) is open in ℝ.

As an application De Morgan’s law in Theorem 2.4.16, we get the following:

Theorem 2.4.20. Let X be a metric space. Then
(i) 0 and X are closed sets;
(ii) if {Fα | α ∈ ℐ} is a family of closed sets of X, then⋂α∈ℐ Fα is closed in X;
(iii) if F1, F2, . . . , Fn are open sets of X, then F1 ∪ F2 ∪ ⋅ ⋅ ⋅ ∪ Fn is closed in X.
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Example 2.4.21. Consider the real line. Note that ⋂n∈ℕ(−
1
n ,

1
n ) = {0} and singletons are

not open inℝ. This shows that the arbitrary intersection of open sets need not be open.
By DeMorgan’s lawwe have⋃n∈ℕℝ\(−

1
n ,

1
n ) = ℝ\{0}. This also shows that the arbitrary

union of closed sets need not be closed.

Definition 2.4.22. A set A in a metric space X is called a clopen set if it is both open and
closed in X .

Example 2.4.23. The empty set 0 and X are clopen sets in a metric space X .

Example 2.4.24. In the discrete space X , all sets are clopen.

Now we describe the open sets in terms of open balls in a metric space.

Proposition 2.4.25. Let X be a metric space. Then a set U in X is open if and only if U is a
union of open balls in X.

Proof. If U is a union of open balls, then U is an open set. Conversely, suppose that U
is open in X . If U = 0, then trivially it is a union of sets over an empty indexing set. If
U ̸= 0, then for each x ∈ U , there is an open ball B(x, rx) contained in U . This shows that
U = ⋃x∈U B(x, rx).

We now describe the open sets in the real line.

Theorem 2.4.26. A nonempty open set in the real line is the countable union of disjoint
open sets.

Proof. Let U be a nonempty open set in the real line. Let V = U ∩ ℚ. Note that V is
nonempty and countable. For each x ∈ V , let Ix denote the union of all open intervals
that are contained in U and contain x. Then Ix is the largest open interval contained in
U that contains x.

Let x, y ∈ V . We claim that Ix = Iy or Ix ∩ Iy = 0. For this, suppose that Ix ̸= Iy and
Ix ∩ Iy ̸= 0. Then Ix ∪ Iy is an open interval containing x and y. Since Ix is the largest open
interval containing x, this is a contradiction. Note that U is the union of open intervals
and each open interval contains rational numbers. This shows that U = ⋃x∈V Ix .

Recall from Example 2.1.14 the subspace (A, dA) of a metric space (X , d). Let x ∈ A.
Let B(x, r) and BA(x, r) denote the open balls around x in X and in A, respectively. Then

B(x, r) ∩ A = {y ∈ A | d(x, y) < r}
= {y ∈ A | dA(x, y) < r}
= BA(x, r).

Now we describe the open and closed sets in a subspace.

Proposition 2.4.27. Let A be a subspace of a metric space X. Then the open sets of A are
the intersections of open sets X with A.
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Proof. Let V be an open set in A. If V = 0, then V = 0 ∩ A. Now suppose that V ̸= 0.
Let x ∈ V . Then there is an open ball BA(x, rx) in A that is contained in A. By the above
observation,

BA(x, rx) = B(x, rx) ∩ A.

Now

V = ⋃
x∈A

BA(x, rx)

= ⋃
x∈A
(B(x, rx) ∩ A)

= (⋃
x∈A

B(x, rx)) ∩ A.

Let U = ⋃x∈A B(x, rx). Then V = U ∩ A. Observe that U is open in X as B(x, rx) is open
in X .

Now let V = U ∩A, where U is open in X . If V = 0, then it is open in A. Let V ̸= 0 and
x ∈ V . Then x ∈ U . Since U is open in X , there is an open ball B(x, r) around x contained
in U . Hence

B(x, r) ∩ A ⊆ U ∩ A = V .

Thus V is open in A.

Example 2.4.28. Consider the setℕ of natural numbers in the real line. Note that

{x} = (x − 1
3
, x + 1

3
) ∩ℕ.

Therefore each singleton is open in the subspaceℕ ofℝ. This implies that each set inℕ
is open inℕ.

Example 2.4.29. Consider the real line. Note that [0, 12 ) is open in [0, 1] since [0, 12 ) =
(− 12 ,

1
2 ) ∩ [0, 1]. Also, note that [0,

1
2 ) is not open in ℝ.

Proposition 2.4.30. Let Y be a subspace of a metric space X, and let A ⊆ Y. Then IntY A =
IntX (A ∪ (X \ Y )) ∩ Y.

Proof. Note that

IntY A =⋃
α
{Vα | Vα is open in Y , and Vα ⊆ A}

=⋃
α
{Uα ∩ Y | Uα is open in X , and Uα ∩ Y ⊆ A}

=⋃
α
{Uα | Uα is open in X , and Uα ⊆ A ∪ (X \ Y )} ∩ Y

= IntX(A ∪ (X \ Y )) ∩ Y .
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Proposition 2.4.31. Let A be a subspace of a metric space X. Then the closed sets of A are
the intersections of closed sets X with A.

Proof. Let F be closed set in A. Then A \ F is open in A. By Proposition 2.4.27 there is an
open setU in X such thatA\F = U ∩A. Note that F = A∩(X \U). Then F is an intersection
of a closed set in X with A.

Now let F = A∩C, where C is closed in X . Since X \C is open in X , A \ F = (X \C)∩A
is open in A. Hence F is closed in A.

Example 2.4.32. Since

(−√2,√2) ∩ℚ = [−√2,√2] ∩ℚ,

(−√2,√2) ∩ℚ is open as well as closed in the subspaceℚ of the real line.

Proposition 2.4.33. Let A be a closed set of a metric space X. Then a set B of A is closed
in A if and only if B is closed in X.

Proof. Let B be closed in A. Then B = F ∩ A for some closed set F of X . Since A is closed
in X , B is closed in X . Conversely, let B be closed in X . Since B ⊆ A, B = B ∩ A. Therefore
B is closed in A.

We can similarly prove the following:

Proposition 2.4.34. Let A be a open set of a metric space X. Then a set B of A is open in A
if and only if B is open in X.

Consider a set A in a metric space X . Then X itself is a closed set containing A. Con-
sider the collection

{Fα | Fα is a closed set containing A}.

Now consider the intersection all such Fα. By Theorem 2.4.20 the intersection is a closed
set. Indeed, this is the smallest closed set containing A.

Definition 2.4.35. Let A be a set in a metric space X . The smallest closed set in X con-
taining A is called the closure of A.

We denote the closure of A by A or ClX A. When the metric space X is given, we will
denote it by ClA. Note that

ClA =⋂{Fα | Fα is closed in X containing A}.

Example 2.4.36. The smallest closed set containing the open interval (a, b) in the real
line is [a, b]. Therefore Cl(a, b) = [a, b]. Similarly, Cl[a, b) = Cl(a, b] = Cl[a, b] = [a, b].

Example 2.4.37. Consider the setℚ of rational numbers in the real line. Let F be a closed
set inℝ such thatℚ ⊆ F ⊆ ℝ. Note thatℚ is not a closed set inℝ. This implies that F ̸= ℚ.
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Also, note that ℝ \ F is open in ℝ and ℝ \ F ⊆ ℝ \ℚ. Since Intℝ \ℚ = 0, ℝ \ F = 0. This
shows that F = ℝ. Hence Clℚ = ℝ. We can similarly observe that Cl(ℝ \ℚ) = ℝ.

Definition 2.4.38. A set A in a metric space X is called a dense set if ClA = X .

By Example 2.4.37, ℚ is dense in ℝ. Also, from the Weierstrass approximation the-
orem of analysis we can observe that the set of polynomials is dense in the set C[a, b]
of continuous maps with the norm ‖ ⋅ ‖∞. As in Example 2.4.14, we can observe that the
closure of an open ball in a metric space need not be the closed ball.

Proposition 2.4.39. Let V be a normed space, and let x ∈ V. Then ClB(x, r) = D(x, r) for
all r > 0.

Proof. Since B(x, r) ⊆ D(x, r), ClB(x, r) ⊆ D(x, r). For the converse, let y ̸∈ ClB(x, r).
Since ClB(x, r) is closed, X \ ClB(x, r) is open. Then there exists ϵ > 0 such that

B(y, ϵ) ⊆ X \ ClB(x, r) ⊆ X \ B(x, r).

Then ‖x − y‖ ≥ r. If ‖x − y‖ > r, then y ̸∈ D(x, r). Now suppose that ‖x − y‖ = r. Let

z = y − ϵ
2
y − x
‖x − y‖
.

Note that ‖z − y‖ = ϵ
2 < ϵ and ‖z − x‖ = r −

ϵ
2 < r. This implies that z ∈ B(y, ϵ) ∩ B(x, r).

This is a contradiction. Hence D(x, r) ⊆ ClB(x, r).

Note that A is closed if and only if ClA = A. Suppose that A ⊆ B. Then A ⊆ B ⊆ ClB.
By the definition of the closure, ClA ⊆ ClB.

Proposition 2.4.40. Let {Aα | α ∈ ℐ} be a family of sets in a metric space. Then
(i) ⋃α∈ℐ ClAα ⊆ Cl(⋃α∈ℐ Aα);
(ii) if ℐ is finite, then⋃α∈ℐ ClAα = Cl(⋃α∈ℐ Aα);
(iii) Cl(⋂α∈ℐ Aα) ⊆ ⋂α∈ℐ ClAα.

Proof. We will only prove (ii). The others are left as exercises.
Without loss of generality, assume that ℐ = {1, . . . , n}. Let F = ⋃nα=1 ClAα. Note that

F is closed. Since Aα ⊆ ClAα,

n
⋃
α=1

Aα ⊆
n
⋃
α=1

ClAα = F .

Since for any set B, ClB is the smallest closed set containing B,

Cl(
n
⋃
α=1

Aα) ⊆
n
⋃
α=1

ClAα.

The equality holds because of (i).
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Proposition 2.4.41. Let A be a set in a metric space X. Then x ∈ ClA if and only if for
every open set U containing x, U ∩ A ̸= 0.

Proof. Let x ∈ ClA. On the contrary, suppose that there is an open set U containing x
such that U ∩ A = 0. Then A ⊆ X \U . Since X \U is closed, ClA ⊆ X \U . This implies that
x ∈ ClA ⊆ X \ U . This is a contradiction. Conversely, suppose that x ∉ ClA. This implies
that x ∈ X \ClA. Let U = X \ClA. Note that U is open and U = X \ClA ⊆ X \A. Therefore
U ∩ A = 0.

Proposition 2.4.42. Let A be a set in a metric space X. Then BdA = ClA ∩ Cl(X \ A).

Proof. Note that x ∈ BdA if and only if x is neither an interior nor an exterior point ofA.
This equivalently means that for each open set U containing x, we have

U ̸⊆ A and U ̸⊆ X \ A

⇔ U ∩ A ≠ 0 and U ∩ (X \ A) ̸= 0.

Therefore by Proposition 2.4.41 we get BdA = ClA ∩ Cl(X \ A).

Proposition 2.4.43. Let Y be a subspace of a metric space X, and let A ⊆ Y. Then ClY A =
ClX A ∩ Y.

Proof. Note that

ClY A =⋂
α
{Fα | Fα is closed in Y and A ⊆ Fα}

=⋂
α
{Kα ∩ Y | Kα is closed in X and A ⊆ Kα ∩ Y }

=⋂
α
{Kα | Kα is closed in X and A ⊆ Kα} ∩ Y

= ClX A ∩ Y .

Proposition 2.4.44. Let A be a set in a metric space X. Then
(i) Cl(X \ A) = X \ IntA;
(ii) Int(X \ A) = X \ ClA.

Proof. We will only prove (i). The proof of (ii) follows the same lines.
Note that

X \ IntA = X \ ⋃
α
{Uα | Uα is open in X and Uα ⊆ A}

=⋂
α
{X \ Uα | X \ Uα is closed in X and X \ A ⊆ X \ Uα}

= Cl(X \ A).
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Proposition 2.4.45. Let A be a set in a metric space X. Then ClA = IntA ∪ BdA.

Proof. By Propositions 2.4.42 and 2.4.44 we have

BdA = ClA ∩ Cl(X \ A)
= ClA ∩ (X \ IntA)
= ClA \ IntA.

Therefore ClA = IntA ∪ BdA.

Definition 2.4.46. Let A be a set in a metric space X . A point x ∈ X is called a limit point
of A if for each r > 0,

(B(x, r) \ {x}) ∩ A ̸= 0.

In other words, x ∈ X is a limit point of A if each open ball around x contains a point
A other than x itself. We denote the set of all limit points of A by D(A). The set D(A) is
called the derived set of A.

Example 2.4.47. Consider the open interval (a, b) in the real line. Observe that if x ∈
[a, b], then every open ball B(x, r) around x contains a point of (a, b) other than x itself.
Let x ∈ ℝ \ [a, b]. Then either x < a or x > b. If x < a, then the open ball B(x, a − x)
contains no point of (a, b). If x > b, then the open ball B(x, x − b) contains no point of
(a, b). This shows thatD((a, b)) = [a, b].We can similarly show thatD([a, b]) = D([a, b)) =
D((a, b]) = [a, b].

Example 2.4.48. Since every open interval around any real number contains rational
as well as irrational numbers, D(ℚ) = D(ℝ \ℚ) = ℝ.

Example 2.4.49. Consider the set A = { 1n | n ∈ ℕ} in the real line. We will prove that
D(A) = {0}. Let r > 0. By the Archimedean property there exists k ∈ ℕ such that 1

k < r.
This implies that the open interval (−r, r) contains a point ofA. This shows that 0 ∈ D(A).
Now suppose that x ̸= 0. Then we have the following possibilities:
(i) x ∈ ( 1k ,

1
k+1 ) for some k ∈ A,

(ii) x ∈ A,
(iii) either x < 0 or x > 1.

We can find a suitable open interval in each of the above cases that does not contain a
point of A other than possibly x. Hence D(A) = {0}.

Example 2.4.50. Consider the set ℤ of integers in the real line. Let x ∈ ℝ. Since (x − 1
2 ,

x + 1
2 ) contains at most one point of ℤ, possibly x itself, D(ℤ) = 0.

Example 2.4.51. In the discrete metric space X , D(A) = 0 for every set A in X .

Proposition 2.4.52. Let A and B be sets in a metric space X. Then
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(i) if A ⊆ B, then D(A) ⊆ D(B);
(ii) D(A ∪ B) = D(A) ∪ D(B).

Proof. We can easily observe (i). We will prove (ii). Since A,B ⊆ A ∪ B, D(A),D(B) ⊆
D(A ∪ B). This implies that D(A) ∪ D(B) ⊆ D(A ∪ B).

Now suppose that x ̸∈ D(A)∪D(B). This implies that x ̸∈ D(A) and x ̸∈ D(B). Therefore
there are open balls B(x, r1) and B(x, r2) such that B(x, ri) ∩ A ⊆ {x}, i = 1, 2. Let r =
min{r1, r2}. Then

B(x, r) ∩ (A ∪ B) = (B(x, r) ∩ A) ∪ (B(x, r) ∩ B)

⊆ {x}.

This shows that x ̸∈ D(A ∪ B). Hence D(A ∪ B) = D(A) ∪ D(B).

Proposition 2.4.53. Let A be a set in a metric space X, and let x ∈ X be a limit point of A.
Then every open ball around x contains infinitely many points of A other than x.

Proof. Suppose there is a positive real number r such that the open ball B(x, r) around
x contains finitely many points of A other than x. Let these points be a1, a2, . . . , an. Note
that ri = d(x, ai) > 0 for all 1 ≤ i ≤ n. Let

s = min{r1, r2, . . . , rn}.

Then the open ball B(x, s) does not contain any point of A other than x. This implies that
x is not a limit point of A, a contradiction.

Proposition 2.4.54. A set A in a metric space X is closed if and only if D(A) ⊆ A.

Proof. Suppose that A is closed in X . Let x ∈ D(A). On the contrary, suppose that x ̸∈ A.
Then x ∈ X \ A. Since X \ A is open, there is an open ball B(x, r) around x contained in
X \ A. This implies that B(x, r) contains no point of A, a contradiction. Hence x ∈ A.

Conversely, suppose that D(A) ⊆ A. Let x ∈ X \ A. Then x ̸∈ D(A). This implies that
there is an open ballB(x, r) that does not contain any point ofA other than x. Since x ̸∈ A,
B(x, r) ⊆ X \ A. This shows that X \ A is open in X . Hence A is closed in X .

Proposition 2.4.55. A set A in a metric space X is closed if and only if BdA ⊆ A.

Proof. Suppose that A is closed in X . Let x ∈ BdA. Then B(x, r) ∩ A ̸= 0 for all r > 0. On
the contrary, suppose that x ̸∈ A. This implies that (B(x, r) \ {x}) ∩A ̸= 0. This shows that
x ∈ D(A). By Proposition 2.4.54, x ∈ A. This is a contradiction.

Conversely, suppose that BdA ⊆ A. Let x ∈ D(A). Then (B(x, r) \ {x}) ∩ A ̸= 0. On the
contrary, suppose that x ̸∈ A. Then x ∈ X \ A. This implies that B(x, r) ∩ (X \ A) ̸= 0. This
shows that x ∈ BdA. Hence x ∈ A, a contradiction.

Proposition 2.4.56. Let A be a set in a metric space X. Then D(A) is a closed set in X.
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Proof. To prove this, we will prove that D(D(A)) ⊆ D(A). Let x ∈ D(D(A)). Then for each
r > 0,

(B(x, r) \ {x}) ∩ D(A) ̸= 0.

Let y ∈ (B(x, r) \ {x}) ∩ D(A). Observe that B(x, r) \ {x} is an open set. Then there is an
open ball B(y, s) contained in B(x, r) \ {x}. Since y ∈ D(A),

(B(y, s) \ {y}) ∩ A ̸= 0.

Let z ∈ (B(y, s) \ {y}) ∩ A. Then

z ∈ B(y, s) \ {y} ⊆ B(x, r) \ {x}.

This implies that z ∈ (B(x, r) \ {x}) ∩ A. This shows that x ∈ D(A).

Proposition 2.4.57. Let A be a set in a metric space X. Then ClA = A ∪ D(A).

Proof. Since ClA is closed, by Proposition 2.4.54 D(ClA) ⊆ ClA. Since A ⊆ ClA, D(A) ⊆
D(ClA). This implies thatA∪D(A) ⊆ ClA. To prove the equality,wewill prove thatA∪D(A)
is the smallest closed set containing A. For this, let x ∈ X \ (A ∪ D(A)). This implies that
x ̸∈ A and x ̸∈ D(A). Since D(A) is closed, we can find an open ball B(x, r) contained in
X \ A such that no point of B(x, r) is in D(A). Therefore B(x, r) ⊆ X \ (A ∪ D(A)). This
implies that x is an interior point of X \ (A∪D(A)). This shows that X \ (A∪D(A)) is open
set in X . Hence A ∪ D(A) is closed.

Now suppose that F is a closed set in X containing A. Then D(A) ⊆ D(F). Since F is
closed, D(F) ⊆ F . This shows that A ∪ D(A) ⊆ F . Thus A ∪ D(A) is the smallest closed set
containing A.

By Proposition 2.4.57 we observe that if A is dense in a metric space X , then the
points of X can be approximated by points of A.

Definition 2.4.58. A metric space X is called separable if it has a countable dense set.

Example 2.4.59. By the rational density theorem the real line is separable.

Example 2.4.60. The Euclidean space ℝn is separable, sinceℚn is dense in ℝn.

Example 2.4.61. The discrete metric space is separable if and only if it is countable.

Example 2.4.62. The space ℓ2 is separable. We may look forward to the set {(xn) | xn ∈
ℚ} as a desired one, but this is an uncountable set.

For each n ∈ ℕ, let us consider the set

An = {(ym) | y1, . . . , yn ∈ ℚ, and ym = 0 for allm > n}.
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Let A = ⋃∞n=1 An. Since each An is countable, A is countable. We claim that A is dense in
ℓ2. Let ϵ > 0 and (xm) ∈ ℓ2. Then there is k ∈ ℕ such that

∞
∑

m=k+1
x2m <

ϵ2

2
.

For each 1 ≤ m ≤ k, choose a rational number ym such that

|xm − ym|
2 <

ϵ2

2k
.

Define a sequence y = (ym) such that ym = 0 for allm > k. Then y ∈ Ak . Now

‖x − y‖22 =
∞
∑
m=1
|xm − ym|

2

=
k
∑
m=1
|xm − ym|

2 +
∞
∑

m=k+1
|xm − ym|

2

< k ϵ
2

2k
+
ϵ2

2
= ϵ2.

This implies that A is dense in ℓ2.

Example 2.4.63. Consider the space C[a, b] of real-valued functions on [a, b] with the
supremum norm. By theWeierstrass approximation theorem each continuous function
can be approximated by a real polynomial

p(X) = a0 + a1X + ⋅ ⋅ ⋅ + anX
n, ai ∈ ℝ.

Since each real number can be approximated by a rational number, each function in
C[a, b] can be approximated by a polynomial with rational coefficients. We can observe
that the set of all polynomials with rational coefficients is countable. This shows that
C[a, b] is separable.

Example 2.4.64. Consider the space B[0, 1] of bounded real-valued functions on [0, 1]
with the norm

‖f ‖∞ = sup{
󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨 | x ∈ [0, 1]}.

Weclaim thatB[0, 1] is not separable. For each x ∈ [0, 1], consider themap χx : [0, 1]→ ℝ
defined by

χx(y) = {
1 if y = x,
0 if y ̸= x.
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Then χx ∈ B[0, 1]. Let A be a dense set in B[0, 1]. Then for each x ∈ [0, 1], there is a
function fx ∈ A such that

‖fx − χx‖∞ <
1
2
.

Let x, y ∈ [0, 1] be such that x ̸= y. Then

‖χx − χy‖∞ = 1.

If fx = fy, then by the triangle inequality we have

1 = ‖χx − χy‖∞
≤ ‖χx − fx‖∞ + ‖fy − χy‖∞

<
1
2
+
1
2

= 1,

a contradiction. Therefore fx ̸= fy for x ̸= y. This shows that

{fx | x ∈ [0, 1]} ⊆ A.

Hence A is uncountable.

2.5 Distance between sets

In elementary geometry of two or three dimensions, we study the distance between a
point and a line or a point and aplane as the shortest distance.With the samemotivation,
we can define the distance between a point and a set in a metric space.

Definition 2.5.1. Let A be a nonempty set in a metric space X , and let x ∈ X . Then the
real number

d(x,A) = inf{d(x, y) | y ∈ A}

is called the distance of the point x from the set A.

Note that d(x,A) ≤ d(x, y) for all y ∈ A and for each real number a > d(x,A), there
exists an element z ∈ A such that d(x, z) < a. We can easily observe that d(x,A) ∈ [0,∞)
and if B is a set in X such that A ⊆ B, then d(x,A) ≤ d(x,B).

Example 2.5.2. If x ∈ A, then d(x,A) = 0. The value d(x,A) may be zero for x ∉ A.
For example, consider the set A = { 1n | n ∈ ℕ} in the real line. Note that 0 ∉ A and
d(0,A) = inf{d(0, 1n ) | n ∈ ℕ} = 0.
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Proposition 2.5.3. Let A be a nonempty set in a metric space X, and let x, y ∈ X. Then
(i) d(x,A) = 0 if and only if x ∈ ClA,
(ii) d(x,A) ≤ d(x, y) + d(y,A).

Proof. (i) Note that

x ∈ ClA⇔ B(x, r) ∩ A ̸= 0 for all r > 0
⇔ for all r > 0, there exists a ∈ A such that d(x, a) < r
⇔ inf{d(x, y) | y ∈ A} = 0.

(ii) Let z ∈ A. Then

d(x, z) ≤ d(x, y) + d(y, z).

This implies that

d(y, z) ≥ d(x, z) − d(x, y)
≥ d(x,A) − d(x, y).

Since z ∈ A is arbitrary, d(y,A) ≥ d(x,A) − d(x, y). In other words, d(x,A) ≤ d(x, y) +
d(y,A).

Proposition 2.5.4. Let F1 and F2 be disjoint closed subsets of a metric space X. Then there
exist disjoint open sets U1 and U2 of X containing F1 and F2, respectively.

Proof. For each x ∈ F1, define

rx =
d(x, F2)

2
,

and for each y ∈ F2, define

sy =
d(y, F1)

2
.

Let

U1 = ⋃
x∈F1

B(x, rx)

and

U2 = ⋃
y∈F2

B(x, sy).

Note that U1 and U2 are open sets containing F1 and F2, respectively. We will show that
U1 and U2 are disjoint.
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On the contrary, suppose that z ∈ U1 ∩U2. Then for some x ∈ F1 and y ∈ F2, we have

d(x, z) < rx

and

d(y, z) < sy.

Without loss of generality, assume that sy ≤ rx . Then

d(x, y) ≤ d(x, z) + d(z, y)
< rx + sy
≤ 2rx = d(x, F2).

This is a contradiction, since d(x, F2) ≤ d(x, y).

Proposition 2.5.5. Let W be a subspace of a finite-dimensional inner product space V,
and let {x1, x2, . . . , xm} be an orthonormal basis of W. Let x ∈ V. Then

d(x,W ) = √‖x‖2 −
m
∑
k=1

󵄨󵄨󵄨󵄨⟨x, xk⟩
󵄨󵄨󵄨󵄨
2.

Proof. Note that z = ∑mk=1⟨x, xk⟩xk ∈ W and

d(x, z)2 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
x −

m
∑
k=1
⟨x, xi⟩xk

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= ‖x‖2 −
m
∑
k=1

󵄨󵄨󵄨󵄨⟨x, xi⟩
󵄨󵄨󵄨󵄨
2.

Let y = ∑mk=1 αkxk inW . Then

d(x, y)2 = ‖x − y‖2

= ‖x‖2 +
m
∑
k=1
|αk |

2 −
m
∑
k=1

αk⟨x, xk⟩ −
m
∑
k=1

αk⟨x, xk⟩.

Note thatw+w ≤ 2|w| for allw ∈ 𝔽 (𝔽 = ℝ orℂ). Thenby the Cauchy–Schwarz inequality
we get

m
∑
k=1

αk⟨x, xk⟩ +
m
∑
k=1

αk⟨x, xk⟩ ≤ 2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

m
∑
k=1

αk⟨x, xk⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2√
m
∑
k=1
|αk |2√

m
∑
k=1

󵄨󵄨󵄨󵄨⟨x, xk⟩
󵄨󵄨󵄨󵄨
2.

Therefore
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d(x, y)2 = ‖x − y‖2

≥
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
x −

m
∑
k=1
⟨x, xk⟩xk

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= ‖x‖2 −
m
∑
k=1

󵄨󵄨󵄨󵄨⟨x, xi⟩
󵄨󵄨󵄨󵄨
2

= d(x, z)2.

Since y ∈ W is arbitrary,

d(x,W ) = √‖x‖2 −
m
∑
i=1

󵄨󵄨󵄨󵄨⟨x, xk⟩
󵄨󵄨󵄨󵄨
2.

Remark 2.5.6. The point z in the proof of Proposition 2.5.5 such that d(x,W ) = d(x, z) is
unique. Indeed, suppose that z1 = ∑

m
k=1 αkxk ∈ W is such that d(x, z1) = d(x,W ) = d(x, z).

This implies that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
x −

m
∑
k=1

αkxk
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= ‖x‖2 −
m
∑
i=1

󵄨󵄨󵄨󵄨⟨x, xk⟩
󵄨󵄨󵄨󵄨
2.

Therefore we get

m
∑
k=1
|αk |

2 +
m
∑
k=1

󵄨󵄨󵄨󵄨⟨x, xk⟩
󵄨󵄨󵄨󵄨
2 =

m
∑
k=1

αk⟨x, xk⟩ +
m
∑
k=1

αk⟨x, xk⟩.

Let w1 = (α1, . . . , αm) and w2 = (⟨x, x1⟩, . . . , ⟨x, xm⟩) belong to 𝔽
m. If we consider the

standard inner product on 𝔽n, then the above equation can be rewritten as

‖w1‖
2 + ‖w2‖

2 = ⟨w1,w2⟩ + ⟨w2,w1⟩.

In other words,

⟨w1,w1⟩ + ⟨w2,w2⟩ = ⟨w1,w2⟩ + ⟨w2,w1⟩.

This implies that ⟨w1 − w2,w1 − w2⟩ = 0. Hence w1 = w2. Therefore αi = ⟨x, xi⟩ for all i.
This shows that z = z1.

Corollary 2.5.7. Let W be a subspace of a finite-dimensional inner product space V, and
let {x1, x2, . . . , xm} be an orthonormal basis of W. Let x, y ∈ V. Then

d(x, y +W ) = √‖x − y‖2 −
m
∑
k=1

󵄨󵄨󵄨󵄨⟨x, xk⟩
󵄨󵄨󵄨󵄨
2.

Proof. Note that
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d(x, y +W ) = inf{d(x, y + w) | w ∈ W}

= inf{‖x − y − w‖ | w ∈ W}

= d(x − y,W )

= √‖x − y‖2 −
m
∑
k=1

󵄨󵄨󵄨󵄨⟨x, xk⟩
󵄨󵄨󵄨󵄨
2.

Proposition 2.5.8. Let V be a normed space over a field 𝔽, and let f ∈ B(V ,𝔽) be such
that f ̸= 0. Let W = {a ∈ V | f (a) = 0}. Then

d(x,W ) = |f (x)|
‖f ‖
.

Proof. Let y ∈ W . Then |f (x)| = |f (x − y)| ≤ ‖f ‖‖x − y‖. Since ‖f ‖ ̸= 0, for all y ∈ W , we
have

|f (x)|
‖f ‖
≤ ‖x − y‖.

This implies that

|f (x)|
‖f ‖
≤ inf{‖x − y‖ | y ∈ W} = d(x,W ).

Recall that

‖f ‖ = sup{󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨 | ‖x‖ ≤ 1}.

This implies that for 0 < ϵ < ‖f ‖, there is z ∈ V with ‖z‖ ≤ 1 such that

0 < ϵ < ‖f ‖ < 󵄨󵄨󵄨󵄨f (z)
󵄨󵄨󵄨󵄨 < ‖f ‖.

Let w = x − f (x)
f (z) z. Then w ∈ W . This implies that

d(x,W ) ≤ ‖x − w‖ = |f (x)|
|f (z)|
‖z‖

≤
|f (x)|
|f (z)|

≤
|f (x)|
‖f ‖
.

Hence d(x,W ) = |f (x)|‖f ‖ .

Corollary 2.5.9. Let V be a normed space over a field 𝔽, and let f ∈ B(V ,𝔽) be such that
f ̸= 0. Let A = {x ∈ V | f (x) = a}, where a ∈ 𝔽. Then
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d(x,A) = |f (x) − a|
‖f ‖
.

Proof. Since f ̸= 0, f (u) ̸= 0 for some u ∈ V . Let z = a
f (u)u. Then z ∈ A and A = z +W ,

whereW = {x ∈ V | f (x) = 0}. Now by Proposition 2.5.8 we have

d(x,A) = inf{‖x − y‖ | y ∈ A}
= inf{‖x − z − w‖ | w ∈ W}
= d(x − z,W )

=
|f (x − z)|
‖f ‖

=
|f (x) − a|
‖f ‖
.

Let us verify that the above formula is the same that we have studied in the ele-
mentary geometry. Consider a plane ax + by + cz + d = 0 inℝ3, where (a, b, c) ̸= (0, 0, 0).
Consider the subspaceW = {(x, y, z) | ax + by + cz = 0} ofℝ3. Let (x1, y1, z1) ∈ R

3 be such
that ax1 + by1 + cz1 + d = 0. Then A = W + (x1, y1, z1) = {(x, y, z) | ax + by + cz + d = 0}.
Define the map f : ℝ3 → ℝ by f (x, y, z) = ax + by + cz. Check that ‖f ‖ = √a2 + b2 + c2.
Then by Corollary 2.5.9,

d((u, v,w),A) = au + bv + cw + d
√a2 + b2 + c2

.

Now we define the distance between sets in a metric space.

Definition 2.5.10. Let A and B be nonempty sets in ametric space X . Then the real num-
ber

d(A,B) = inf{d(x, y) | x ∈ A, y ∈ B}

is called the distance between the sets A and B.

We can easily observe that d(A,B) ∈ [0,∞) and d(A,B) = d(B,A) for all nonempty
sets A and B in a metric space. We can also observe that d(A1,B1) ≤ d(A,B) for all
nonempty subsets A1 and B1 of A and B, respectively

Proposition 2.5.11. Let A, B, and C be nonempty sets in a metric space X. Then
(i) d(A,B) = inf{d(x,B) | x ∈ A},
(ii) d(A ∪ B, C) = min{d(A, C), d(B, C)},
(iii) d(A,B) ≤ d(x,A) + d(x,B) for all x ∈ X.

Proof. (i) Note that

{d(x, y) | x ∈ A, y ∈ B} = ⋃
x∈A
{d(x, y) | y ∈ B}.
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This implies that

d(A,B) = inf{d(x, y) | x ∈ A, y ∈ B}
= inf{inf{d(x, y) | y ∈ B} | x ∈ A}
= inf{d(x,B) | x ∈ A}.

(ii) We can easily observe the following:

{d(x, C) | x ∈ A ∪ B} = {d(x, C) | x ∈ A} ∪ {d(x, C) | x ∈ B}.

Therefore (ii) follows from (i).
(iii) Let ϵ > 0. Then there are a ∈ A and b ∈ B such that

d(x, a) < d(x,A) + ϵ
2

and

d(x, b) < d(x,B) + ϵ
2
.

Then

d(A,B) ≤ d(a, b)
≤ d(a, x) + d(x, b)
< d(x,A) + d(x,B) + ϵ.

Since ϵ > 0 is arbitrary,

d(A,B) ≤ d(x,A) + d(x,B).

The distance between sets is not a metric on the set of sets in a metric space. It may
not satisfy condition (ii) of Definition 2.1.1. For example, consider A = (0, 1) and B = (1, 2)
in the real line. Note that d(A,B) = 0. Similarly, it may not satisfy the triangle inequality.
For example, consider A = (0, 1), B = (4, 5), and C = ( 32 , 2) ∪ (

5
2 ,

7
2 ). Then d(A,B) = 3,

d(A, C) = 1
2 , and d(B, C) =

1
2 .

Now we define the distance between bounded sets of a metric space that satisfies
most conditions of the metric.

Definition 2.5.12. Let A and B be nonempty bounded sets in a metric space X . Then the
real number

dH (A,B) = max{sup{d(x,B) | x ∈ A}, sup{d(y,A) | y ∈ B}}

is called the Hausdorff distance between the sets A and B.
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We can easily observe that dH (A,B) ∈ [0,∞) and dH (A,B) = dH (B,A).

Proposition 2.5.13. Let A, B, and C be nonempty bounded sets in a metric space X. Then
(i) dH (A,B) = 0 if and only if ClA = ClB,
(ii) dH (A,B) ≤ dH (A, C) + dH (C,B).

Proof. By Proposition 2.5.3(i) we can observe that dH (A,B) = 0 if and only ifA ⊆ ClB and
B ⊆ ClA. This proves (i). We will now prove (ii). Let x ∈ A. Then by Proposition 2.5.3(ii),
for any y ∈ C, we have

d(x,B) ≤ d(x, y) + d(y,B)
≤ d(x, y) + dH (C,B).

This implies that

d(x,B) − dH (C,B) ≤ d(x, y)
≤ d(x, C)
≤ dH (A, C).

Therefore

d(x,B) ≤ dH (A, C) + dH (C,B).

Similarly, for z ∈ B, we have

d(z,A) ≤ dH (A, C) + dH (C,B).

Hence

dH (A,B) ≤ dH (A, C) + dH (C,B).

By Proposition 2.5.13(i) we observe that dH (A,A) = 0 for all nonempty bounded sets
A in X . We can also observe that dH satisfies all the conditions of a metric on the set of
nonempty bounded sets in X except that dH (A,B)may be zero without A = B.

Proposition 2.5.14. The Hausdorff distance dH is a metric on the set of all nonempty
closed bounded sets of a metric space X.

Proof. We only have to prove that dH (A,B) = 0 implies A = B. For this, suppose A and B
are nonempty closed bounded sets of a metric space X such that A ̸= B. We can suppose
that A \ B ̸= 0. Let a ∈ A \ B. Since B is closed, X \ B is open. Then there is a positive real
number r such that B(a, r) ⊆ X \ B. This implies that d(a,B) ≥ r. Hence

dH (A,B) ≥ d(a,B) ≥ r > 0.



2.5 Distance between sets � 67

Wenowprove an equivalent formulation of theHausdorff distance. For a nonempty
set A in a metric space X , let

B(A, r) = {y ∈ X | d(x,A) < r} and

D(A, r) = {y ∈ X | d(x,A) ≤ r}.

Proposition 2.5.15. Let A and B be nonempty bounded sets in a metric space X. Then

dH (A,B) = inf{r ∈ [0,∞) | A ⊆ B(A, r) and B ⊆ B(B, r)}

= inf{r ∈ [0,∞) | A ⊆ D(A, r) and B ⊆ D(B, r)}.

Proof. Let

d1 = inf{r ∈ [0,∞) | A ⊆ B(A, r) and B ⊆ B(B, r)}

and

d2 = inf{r ∈ [0,∞) | A ⊆ D(A, r) and B ⊆ D(B, r)}.

Note that for nonempty sets C and D in X , if C ⊆ B(D, r), then C ⊆ D(D, r). This implies
that d2 ≤ d1. Also, note that d(a,B) ≤ dH (A,B) and d(b,A) ≤ dH (A,B) for all a ∈ A and
b ∈ B. This shows that A ⊆ B(B, r) and B ⊆ B(A, r) for all r > dH (A,B). Therefore d1 ≤ r
for all r > dH (A,B). Hence d1 ≤ dH (A,B).

Now note that A ⊆ D(B, r) and B ⊆ D(A, r) for all r > d2. Therefore, for all a ∈ A and
b ∈ B, we have d(a,B) ≤ r and d(b,A) ≤ r. Hence dH (A,B) ≤ r for all r > d2. This implies
that dH (A,B) ≤ d2. Thus

dH (A,B) ≤ d2 ≤ d1 ≤ dH (A,B).

This shows that dH (A,B) = d1 = d2.

Let (X , d1) and (Y , d2) be bounded metric spaces. We would like to ask “What is the
distance between X and Y?” At the first sight, this question may seem to be absurd, but
if X and Y are subspaces of some larger space Z, then we can think of the Hausdorff
distance between X and Y . Let us consider the following example.

Example 2.5.16. Let (X , d1) and (Y , d2) be bounded metric spaces such that X ∩ Y = 0.
Let Z = X ⊔ Y . Define d : Z × Z → ℝ by

d(x, y) =
{{{
{{{
{

d1(x, y) if x, y ∈ X ,
d2(x, y) if x, y ∈ Y ,
m otherwise,
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where m = max{diam(X), diam(Y )}. We can easily observe that d is nonnegative and
symmetric and that d is zero only on the diagonal of Z. We now observe that d satisfies
the triangle inequality. We will prove it in two cases, and the remaining cases are left as
exercises. Suppose x, y ∈ X and z ∈ Y . Then

d(x, y) = d1(x, y) ≤ m +m = d(x, z) + d(z, y).

Suppose that x, z ∈ X and y ∈ Y . Then

d(x, y) = m ≤ m + d(x, z) = d(z, y) + d(x, z).

The other cases can be similarly proved.

Definition 2.5.17. Let (X , dX ) and (Y , dY ) be metric spaces. A map f : X → Y is called an
isometric embedding if for all x, y ∈ X ,

dX (x, y) = dY (f (x), f (y)).

A metric space X is said to be isometrically embedded in a metric space Y if there
is an isometric embedding from X to Y . Note that an isometric embedding f : X → Y
is always injective, since if f (x) = f (y), then dX (x, y) = dY (f (x), f (y)) = 0. This shows
that x = y. In Example 2.5.16, X and Y are isometrically embedded in Z = X ⊔ Y , which
are indeed subspaces of Z. In Example 2.5.16, we assumed that X ∩ Y = 0. If X ∩ Y ̸=
0, then we may consider the sets X ′ = X × {0} and Y ′ = Y × {1}. Define d′X on X ′ by
d′X ((x, 0), (y, 0)) = dX (x, y). Then d

′
X is a metric on X

′. Similarly, we define a metric d′Y on
Y ′. Note that f : X → X ′ defined by f (x) = (x, 0) is an isometric embedding, which is
also surjective. Similarly, there is a surjective isometric embedding from Y to Y ′. Note
that X ′ ∩ Y ′ = 0.

Definition 2.5.18. Let X and Y be bounded metric spaces. Consider the collection

𝒜 = {(Z, f , g) | f : X → Z and g : Y → Z are isometric embeddings}.

Then

dGH = inf{r ∈ ℝ | (Z, f , g) ∈ 𝒜 such that dH(f (X), f (Y )) ≤ r}

is called the Gromov–Hausdorff distance between X and Y .

The collection𝒜 in the above definition is not a set, but the collection to define dGH is
a set. Nowwewill prove that to obtain dGH, we should not look at arbitrarymetric spaces
Z satisfying the above condition. Let dX and dY be metrics on X and Y , respectively. Let
ℬ denote the set of all metrics d on X ⊔ Y such that d |X= dX and d |Y= dY .
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Proposition 2.5.19. Let X and Y be bounded metric spaces. Then

dGH(X , Y ) = inf{dH (X , Y ) | d ∈ ℬ}.

Proof. Let dℬ = inf{dH (X , Y ) | d ∈ ℬ}. For every d ∈ ℬ, we have (X ⊔Y , iX , iY ) ∈ 𝒜, where
iX is the inclusion map. This shows that

dGH(X , Y ) ≤ dℬ .

Let ϵ > 0. By the definition of the Gromov–Hausdorff distance there is (Z, f , g) ∈ 𝒜 such
that

dH(f (X), f (Y )) ≤ dGH(X , Y ) + ϵ.

Suppose that f (X)∩ f (Y ) = 0. Wemay suppose that Z = f (X)⊔g(Y ). If we identify X with
f (X) and Y with g(Y ), then we get a metric d ∈ ℬ such that

dH (X , Y ) ≤ dGH(X , Y ) + ϵ.

Suppose that f (X) ∩ f (Y ) ̸= 0. Consider Z × ℝ with the metric d′((z1, r1), (z2, r2)) =
d(z1, z2)+ |r1−r2|. Note that Z is isometrically embedded in Z×ℝ. Consider X1 = f (X)×{0}
and Y1 = g(Y ) × {ϵ} in Z × ℝ. Note that X1 ∩ Y1 = 0. Also, note that

d′H (X1, Y1) = dH(f (X), g(Y )) + ϵ ≤ dGH(X , Y ) + 2ϵ.

Identifying X with X1 and Y with Y1, we get a metric ρ ∈ ℬ such that

ρH (X , Y ) ≤ dGH(X , Y ) + 2ϵ.

Since ϵ > 0 is arbitrary,

dℬ ≤ dGH(X , Y ).

Thus dℬ = dGH(X , Y ).

Exercises

2.1. First of all, complete whatever is left for you as exercises.
2.2. Let (X , d) be a metric space. Check which one of following is a metric on X :

(i) d1(x, y) = αd(x, y) for α ∈ ℝ,
(ii) d2(x, y) = 2

d(x,y),
(iii) d3(x, y) = 2

−d(x,y).
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2.3. Let x = (x1, . . . , xn), y = (y1, . . . , yn), z = (z1, . . . , zn), and w = (w1, . . . ,wn) be points
in the Euclidean space (ℝn, d). Suppose zi = ∑

n
j=1 aijxj and wi = ∑

n
j=1 aijyj , where

n
∑
i=1

aikail = {
0 if k ̸= l,
1 if k = l.

Show that d(x, y) = d(z,w).
2.4. Show that the function d : ℂ × ℂ→ ℝ defined by

d(z,w) = |z − w|

√(1 + |z|2)(1 + |w|2)

is a metric on ℂ. Also, show that the metric d can be extended to the extended
complex plane ℂ ∪ {∞} by defining

d(z,∞) = 1
1 + |z|2

and d(∞,∞) = 0.

2.5. Consider the metric d∞ on ℝ2 and sketch the open ball B((0, 1), 1).
2.6. Show that d(x, y) = |x − y|a is a metric on ℝ if 0 < a ≤ 1.
2.7. Let a1, . . . , an be fixed positive real numbers. Show that

d(x, y) =
n
∑
i=1

ai|xi − yi|

is a metric on ℝn, where x = (x1, . . . , xn) and y = (y1, . . . , yn).
2.8. Show that {(x, y, z) ∈ R3 | x2 + y2 ≤ z} is a convex set.
2.9. Is arbitrary intersection of convex sets a convex set?
2.10. Show that for 1 ≤ p < q ≤∞, ℓp is contained in ℓq.
2.11. Let x = (xn) ∈ ℓp for some 1 ≤ p <∞. Show that ‖x‖∞ = limp→∞ ‖x‖p.
2.12. Let 1 ≤ p <∞. Define ‖ ⋅ ‖p on C𝔽[a, b] by

‖f ‖p = (
b

∫
a

󵄨󵄨󵄨󵄨f (t)
󵄨󵄨󵄨󵄨p)

1
p

.

Show that ‖ ⋅ ‖p is a norm on C𝔽[a, b].
2.13. Show that ‖ ⋅ ‖∞ is a norm on C𝔽[a, b], where ‖f ‖∞ = sup{|f (t)| | t ∈ [a, b]}.
2.14. Let u > 0. Define ‖f ‖ = min{‖f ‖∞, u‖f ‖1} on C[a, b]. Find the condition on u such

that ‖ ⋅ ‖ is a norm on C[a, b].
2.15. LetM denote the set of allm × n real matrices. For every A = (aij) ∈ M , define

‖A‖ = max{ ‖Ax‖
‖x‖
󵄨󵄨󵄨󵄨󵄨󵄨 x ∈ ℝ

n \ {0}}.
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Show that ‖A‖ defines a norm onM . Also, show that if A is an n × nmatrix, then

‖A‖ = max{ytAx | ‖x‖ = ‖y‖ = 1}.

2.16. Compute ‖T‖, where
(i) T : ℓ2 → ℓ2 defined by T((xn)) = (xn + xn+1);
(ii) T : (C[0, 1], ‖ ⋅ ‖∞)→ (C[0, 1], ‖ ⋅ ‖∞) defined by T(f (x)) = ∫

x
0 (x − t)f (t)dt.

2.17. Which norm ‖ ⋅ ‖p on C[a, b] is induced from an inner product?
2.18. Let f : [0,∞) → [0,∞) be such that f is differentiable on (u,∞) for some u ≥ 0

and limx→∞ f
′(x) =∞. Show that f is not a metric-preserving map.

2.19. If f and g are metric-preserving maps and k > 0, then show that f +g, f ∘g, kf , and
max{f , g} are metric-preserving maps.

2.20. If (fn) is a sequence ofmetric-preservingmaps and fn converges to f pointwisewith
f (x) > 0 for all x, then show that f is metric preserving.

2.21. Let f be a metric-preserving map. Show that f is discontinuous at 0 if and only if
f ∘ d is the discrete metric for every metric d.

2.22. Show that each finite set in a metric space is closed.
2.23. Show that the set A is dense in a metric space X if and only if the complement of A

has an empty interior.
2.24. Show that the set A = {a + b√2 | a, b ∈ ℤ} is dense in the real line.
2.25. Show that any subgroup of (ℝ,+) is either discrete or dense in the real line.
2.26. Let V be a normed space. Let A be a set in V such that V \ A is a subspace of V .

Show that A is either empty or dense in V .
2.27. LetW be a subspace of a normed space V . Show that IntW = 0 orW = V .
2.28. Letm < n. Show that the set of all n×m real matrices of rankm is open in (Mnm, d),

whereMnm is the set of all n ×m real matrices, and

d((aij), (bij)) =∑
i
∑
j
|aij − bij|.

2.29. Show that the set of all nilpotent matrices is closed in (Mn, d), whereMn is the set
of all n × n real matrices, and d is the metric onMn as defined in Exercise 2.28.

2.30. Show that ℓ∞ is not separable.
2.31. Let A and B be nonempty sets in a metric space. Show that

dH (A,B) = dH (ClA,B) = dH (A, ClB).

2.32. LetA, B, C, andD be nonempty closed and bounded sets in ametric space such that
C ⊆ A and D ⊆ B. Show that

dH (A ∪ D,B ∪ C) ≤ dH (A,B).
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2.33. Let X and Y be separable metric spaces. Show that

dGH(X , Y ) = inf{dh(f (X), g(Y )) | f : X → ℓ∞, g : Y → ℓ∞
are isometric embeddings}.

Here the infimum is taken over all the isometric embeddings.



3 Maps between metric spaces

In this chapter, we study continuous maps between metric spaces. We also study home-
omorphisms and isometries between metric spaces.

3.1 Continuous maps

Let us recall the ϵ-δ definition of a continuous map f : ℝ→ ℝ. A map f : ℝ→ ℝ is said
to be continuous at a ∈ ℝ if for each ϵ > 0, there is δ > 0 such that

|x − a| < δ ⇒ 󵄨󵄨󵄨󵄨f (x) − f (a)
󵄨󵄨󵄨󵄨 < ϵ.

This definition says that the distance between f (x) and f (a) is closed enough whenever
the distance between x and a is closed enough. We adopt this notion in a metric space
as follows.

Definition 3.1.1. Let (X , dX ) and (Y , dY ) be metric spaces. Then a map f : X → Y is said
to be continuous at a ∈ X if for each ϵ > 0, there is δ > 0 such that

dX (x, a) < δ ⇒ dY (f (x), f (a)) < ϵ.

This definition may be reformulated as follows.
A map f : X → Y is said to be continuous at a ∈ X if for each open ball B(f (a), ϵ)

around f (a), there is an open ball B(a, δ) around a such that

f (B(a, δ)) ⊆ B(f (a), ϵ).

We can easily observe that a map f : X → Y is continuous at a ∈ X if and only if for each
open set V in Y containing f (a), there is an open set U containing a such that f (U) ⊆ V .

A map f : X → Y is called continuous if it is continuous at each point of X . A map
that is not continuous is called a discontinuous map.

Example 3.1.2. A constant map between metric spaces is continuous.

Example 3.1.3. The identity map on a metric space X is continuous.

Theorem 3.1.4. Amap f : X → Y is continuous if and only if the inverse image of an open
set in Y is open in X.

Proof. Let f : X → Y be continuous, and let U be an open set in Y . If U = 0, then
f −1(U) = 0, and the result follows. Suppose that U ̸= 0. We will show that each point of
f −1(U) is an interior point.

Let x ∈ f −1(U). Then f (x) ∈ U . Since U is open, there is ϵ > 0 such that

B(f (x), ϵ) ⊆ U .

https://doi.org/10.1515/9783111636085-003
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Since f is continuous, there is δ > 0 such that

f (B(x, δ)) ⊆ B(f (x), ϵ).

This implies that

B(x, δ) ⊆ f −1(f (B(x, δ))) ⊆ f −1(B(f (x), ϵ)) ⊆ f −1(U).

This shows that x is an interior point of f −1(U). Since x ∈ f −1(U) is arbitrary, f −1(U) is
open.

Conversely, suppose that f −1(U) is open in X for each open set U in Y . To prove that
f is continuous, we will prove that f is continuous at every point of X . Let x ∈ X . Choose
an open ball B(f (x), ϵ) around f (x) in Y . Since an open ball is an open set, f −1(B(f (x), ϵ))
is an open set in X containing x. Then there is a real number δ > 0 such that

B(x, δ) ⊆ f −1(B(f (x), ϵ)).

This implies that

f (B(x, δ)) ⊆ B(f (x), ϵ).

Hence f is continuous at x. Since x ∈ X is arbitrary, f is continuous.

Corollary 3.1.5. Amap f : X → Y is continuous if and only if the inverse image of an open
ball in Y is an open set in X.

Example 3.1.6. Consider the map f : ℝ→ ℝ defined by

f (x) = {
1 if x ≥ 0,
0 if x < 0.

Let U = (0, 3). Since f −1(U) = [0,∞) is not open in ℝ, f is not continuous.

Note that for each subset A of Y ,

X \ f −1(Y \ A) = X \ (X \ f −1(A)) = f −1(A).

Therefore by Theorem 3.1.4 we get the following:

Proposition 3.1.7. A map f : X → Y is continuous if and only if the inverse image of a
closed set in Y is closed in X.

Proposition 3.1.8. A map f : X → Y is continuous if and only if for each set A in X,

f (ClA) ⊆ Cl f (A).
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Proof. Let f be a continuous map. Since f (A) ⊆ Cl f (A),

A ⊆ f −1(f (A)) ⊆ f −1(Cl f (A)).

Since f is continuous, f −1(Cl f (A)) is a closed set in X . Therefore

ClA ⊆ f −1(Cl f (A)).

Hence

f (ClA) ⊆ f (f −1(Cl f (A))) ⊆ Cl f (A).

Conversely, suppose that for each set A in X ,

f (ClA) ⊆ Cl f (A).

Let F be a closed set in Y . We will show that f −1(F) is a closed set in X .
By the assumption,

f (Cl f −1(F)) ⊆ Cl f (f −1(F)).

Since f (f −1(F)) ⊆ F ,

f (Cl f −1(F)) ⊆ Cl F .

Since F is closed,

f (Cl f −1(F)) ⊆ F .

Therefore

Cl f −1(F) ⊆ f −1(f (Cl f −1(F))) ⊆ f −1(F).

This shows that

Cl f −1(F) = f −1(F).

Hence f −1(F) is a closed set in X .

Proposition 3.1.9. A map f : X → Y is continuous if and only if for each set B in Y ,

f −1(IntB) ⊆ Int f −1(B).

Proof. Suppose f is continuous. Since IntB is an open set in Y , f −1(IntB) is open in X .
Since IntB ⊆ B, f −1(IntB) ⊆ f −1(B). This implies that
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f −1(IntB) ⊆ Int f −1(B).

Conversely, suppose that for all sets B in Y ,

f −1(IntB) ⊆ Int f −1(B).

Let U be an open set in Y . Then IntU = U . By the assumption we have

f −1(U) = f −1(IntU) ⊆ Int f −1(U) ⊆ f −1(U).

Therefore Int f −1(U) = f −1(U). This shows that f −1(U) is open inX . Hence f is continuous.

Corollary 3.1.10. A map f : X → Y is continuous if and only if for each set B in Y ,

Cl f −1(B) ⊆ f −1(ClB).

Proof. Let C = Y \ B. By Proposition 3.1.9 we have

f is continuous⇔ f −1(Int C) ⊆ Int f −1(C)

⇔ f −1(Int(Y \ B)) ⊆ Int f −1(Y \ B)

⇔ f −1(Y \ ClB) ⊆ Int(X \ f −1(B))

⇔ X \ f −1(ClB) ⊆ Int(X \ f −1(B))

⇔ X \ f −1(ClB) ⊆ X \ Cl f −1(B)

⇔ Cl f −1(B) ⊆ f −1(ClB).

Corollary 3.1.11. A map f : X → Y is continuous if and only if for each set B in Y ,

Bd f −1(B) ⊆ f −1(BdB).

Proof. Suppose that f is continuous. Then by Corollary 3.1.10

Bd f −1(B) = Cl f −1(B) ∩ Cl(X \ f −1(B))

= Cl f −1(B) ∩ Cl f −1(Y \ B)

⊆ f −1(ClB) ∩ f −1(Cl(Y \ B))

= f −1(ClB ∩ Cl(Y \ B))

= f −1(BdB).

Conversely, suppose that for each set B in Y ,

Bd f −1(B) ⊆ f −1(BdB).
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Let U be an open set in Y . Then Y \ U is closed in Y . By Proposition 2.4.55 we have

Bd(Y \ U) ⊆ Y \ U .

Therefore

f −1(Bd(Y \ U)) ⊆ f −1(Y \ U).

By the assumption,

Bd f −1(Y \ U) ⊆ f −1(Bd(Y \ U)).

Therefore

Bd f −1(Y \ U) ⊆ f −1(Y \ U).

Therefore f −1(Y \U) is closed by Proposition 2.4.55. Hence f −1(U) is open inX . This shows
that f is continuous.

By Proposition 3.1.9 a map f : X → Y is continuous if and only if for all a ∈ X and
for all sets B in Y ,

f (a) ∈ IntB⇒ a ∈ Int f −1(B).

Example 3.1.12. Consider the map f : ℝ→ ℝ defined by

f (x) = {
x2−1
x−1 if x ̸= y,
3 if x = y.

Let B = (2, 4). Note that

f (1) = 3 ∈ B.

Let x ∈ f −1(B) be such that x ̸= 1. Then

f (x) = x + 1 ∈ B.

This implies that x ∈ (1, 3). This shows that

f −1(B) ⊆ {1} ∪ (1, 3) = [1, 3).

Since 1 ∉ Int f −1(B), f is not continuous.
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We have seen that the constant map f : X → Y defined by f (x) = c for all x ∈ X is
continuous, where c ∈ Y is fixed element. Moreover, for any open set U in Y , we have

f −1(U) = {
0 if c ∉ U ,
X if c ∈ U .

Example 3.1.13. Every map f from the discrete metric space X to any metric space Y is
continuous.

Example 3.1.14. LetA be a subspace of ametric space X . Then the inclusionmap i : A→
X is continuous, since if U is open in X , then i−1(U) = U ∩ A is open in A.

Example 3.1.15. The identity map I : X → X need not be continuous if the domain and
codomain are with different metrics. For example, consider the set ℝ of real numbers
with the discrete metric d1 and the usual metric d2. Then the identity map I : (X , d2) →
(X , d1) is not continuous. Note that {0} is open in (X , d1) but {0} = I

−1({0}) is not open in
(X , d2).

This example shows that the inverse map of a bijective map between metric spaces
need not be continuous.

Proposition 3.1.16. Let d1 and d2 be two metrics on a set X. Then the identity map I :
(X , d1)→ (X , d2) is continuous if and only if for each open ball Bd2 (x, ϵ) in (X , d2), there is
an open ball Bd1 (x, δ) in (X , d1) such that Bd1 (x, δ) ⊆ Bd2 (x, ϵ).

Proof. Suppose that the identity map I : (X , d1) → (X , d2) is continuous. Consider an
open ball Bd2 (x, ϵ) in (X , d2). Then

Bd2 (x, ϵ) = I
−1(Bd2 (x, ϵ))

is open in (X , d1). Then there is a real number δ > 0 such that

Bd1 (x, δ) ⊆ Bd2 (x, ϵ).

For the converse, let U be an open set in (X , d2). If U = 0, then I
−1(U) is open in (X , d1).

Suppose that U ̸= 0. Let x ∈ U . Then there is a real number ϵ > 0 such that

B(x, ϵ) ⊆ U .

By the assumption there is an open ball Bd1 (x, δ) in (X , d1) such that

Bd1 (x, δ) ⊆ Bd2 (x, ϵ) ⊆ U = I
−1(U).

This shows that I is continuous.



3.1 Continuous maps � 79

Proposition 3.1.17. Let X, Y , and Z be metric spaces. Let f : X → Y and g : Y → Z be
continuous at a ∈ X and f (a) ∈ Y, respectively. Then g ∘ f : X → Z is continuous at a ∈ X.

Proof. Consider an open ball B((g ∘ f )(a), ϵ) around g ∘ f (a) in Z. Since g is continuous
at f (a), there is an open ball B(f (a), δ′) around f (a) such that

g(B(f (a), δ′)) ⊆ B((g ∘ f )(a), ϵ). (3.1)

Since f is continuous at a, there is an open ball B(x, δ) around a such that

f (B(a, δ)) ⊆ B(f (a), δ′). (3.2)

By equations (3.1) and (3.2) we have

(g ∘ f )(B(a, δ)) ⊆ B(g ∘ f (a), ϵ).

Hence g ∘ f is continuous at a ∈ X .

Corollary 3.1.18. The composition of continuous maps is continuous.

Example 3.1.19. If f : X → Y is a continuous map and A is a subspace of X , then the
restriction map f |A: A → Y is continuous, since f |A= f ∘ i, where i : A → X is the
inclusion map.

Example 3.1.20. The restriction of a discontinuous map may be continuous. For exam-
ple, consider the map f : ℝ→ ℝ defined by

f (x) = {
0 if x ∈ ℚ,
1 if x ∈ ℝ \ℚ.

Note that {0} is closed inℝ and f −1({0}) = ℚ. Sinceℚ is not closed inℝ, f is not continu-
ous. We can observe that f |ℚ: ℚ→ ℝ is continuous, since f |ℚ is constant map.

Proposition 3.1.21 (Pasting lemma). Let X and Y be metric spaces, and let A and B be
closed sets of X such that A ∪ B = X. Let f : A → Y and g : B → Y be continuous
maps such that f (x) = g(x) for all x ∈ A ∩ B. Then the map h : X → Y defined by

h(x) = {
f (x), x ∈ A,
g(x), x ∈ B,

is continuous.

Proof. Let F be a closed set in Y . Then f −1(F) and g−1(F) are closed in A and B, respec-
tively. Since A and B are closed sets in X , f −1(F) and g−1(F) are closed in X . Note that

h−1(F) = f −1(F) ∪ g−1(F).

This shows that h−1(F) is closed in X . Hence h is continuous.
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Example 3.1.22. Define h : ℝ→ ℝ by

h(x) = |x| = {
−x if x ≤ 0,
x if x ≥ 0.

Let A = (−∞, 0] and B = [0,∞). Note that the maps f : A→ ℝ and g : B→ ℝ defined by
f (x) = −x and g(x) = x are continuous. By the pasting lemma, h is continuous.

We will now focus on the real-valued continuous maps.

Proposition 3.1.23. Let X be a metric space. Then a map f : X → ℝ is continuous if and
only if f −1(a,∞) and f −1(−∞, b) are open sets of X for all a, b ∈ ℝ.

Proof. Note that

(a, b) = (−∞, b) ∩ (a,∞).

By Corollary 3.1.5, f is continuous.

Example 3.1.24. Let k ∈ ℝ. Then the map f : ℝ→ ℝ defined by f (x) = kx is continuous,
since if k = 0, then f is constant. If k ̸= 0, then

f −1(a,∞) = {x ∈ ℝ | f (x) > a}

= {
( ak ,∞) if k > 0,
(−∞, ak ) if k < 0,

and

f −1(−∞, b) = {x ∈ ℝ | f (x) < b}

= {
(−∞, bk ) if k > 0,
( bk ,∞) if k < 0.

Proposition 3.1.25. Let (X , d) be a metric space. Let f and g be continuous maps from X
to ℝ. Then
(i) f + g : X → ℝ defined by (f + g)(x) = f (x) + g(x) is continuous,
(ii) fg : X → ℝ defined by (fg)(x) = f (x)g(x) is continuous,
(iii) if g(x) ̸= 0 for all x ∈ X, then f

g : X → ℝ defined by (
f
g )(x) =

f (x)
g(x) is continuous.

Proof. We will prove (i). The rest is left as an exercise.
Let ϵ > 0 and a ∈ X . Since f is continuous, there is δ1 > 0 such that

d(x, a) < δ1 ⇒
󵄨󵄨󵄨󵄨f (x) − f (a)

󵄨󵄨󵄨󵄨 <
ϵ
2
.

Since g is continuous, there is δ2 > 0 such that
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d(x, a) < δ2 ⇒
󵄨󵄨󵄨󵄨g(x) − g(a)

󵄨󵄨󵄨󵄨 <
ϵ
2
.

For δ = min{δ1, δ2}, we have

󵄨󵄨󵄨󵄨(f + g)(x) − (f + g)(a)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨(
󵄨󵄨󵄨󵄨f (x) − f (a)

󵄨󵄨󵄨󵄨) + (
󵄨󵄨󵄨󵄨g(x) − g(a)

󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨

≤
ϵ
2
+
ϵ
2

= ϵ

whenever d(x, a) < δ. This shows that f + g is continuous.

Example 3.1.26. By Proposition 3.1.25 we can observe that the map f : ℝ → ℝ defined
by

f (x) = a0 + a1x + ⋅ ⋅ ⋅ + anx
n

is continuous, where n ∈ ℕ and ai ∈ ℝ.

Let us consider the map f : ℝ → ℝ defined by f (x) = x2. Note that f is continuous.
Take ϵ = 1. Since f is continuous at a = 0, there is δ > 0 such that

|x| < δ ⇒ 󵄨󵄨󵄨󵄨x
2󵄨󵄨󵄨󵄨 < 1. (3.3)

Notes that equation (3.3) is satisfied if we take δ = 1. Now let us deal with the continuity
of f at a = 2. Let x = 2 + 1

3 . Then |x − 2| =
1
3 < 1, but

󵄨󵄨󵄨󵄨f (x) − f (2)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨x
2 − 22󵄨󵄨󵄨󵄨 > 1.

This shows that the value of δ that works for a = 0 does not work for a = 2. We are
interested in the case of a continuous map when the value of δ uniformly works for all
points of a metric space for a given ϵ.

Definition 3.1.27. Let (X , dX ) and (Y , dY ) be metric spaces. A map f : X → Y is called a
uniformly continuous map if for each ϵ > 0, there exists δ > 0 such that for all x, y ∈ X ,
we have

dX (x, y) < δ ⇒ dY (f (x), f (y)).

From the definition note that the continuity is a local concept, which is defined at
a particular point, whereas the uniform continuity is not a local concept. We can easily
observe that a uniformly continuous map is continuous. The map f : ℝ → ℝ defined
by f (x) = x2 is continuous but not uniformly continuous. Also, the constant and identity
maps are uniformly continuous.
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Proposition 3.1.28. Let (X , dX ) and (Y , dY ) bemetric spaces. Let f : X → Y be amap such
that for all x, y ∈ X,

dY (f (x), f (y)) ≤ kdX (x, y)

for some positive real number k. Then f is uniformly continuous.

Proof. Let ϵ > 0. Then

dX (x, y) <
ϵ
k
⇒ dY (f (x), f (y)) < ϵ.

This shows that f is uniformly continuous.

Example 3.1.29. Consider the map f : ℝ→ ℝ defined by

f (x) = x2

x2 + 1
.

We can observe that |x| < x2 + 1 for all x ∈ ℝ by considering the cases |x| < 1 and |x| ≥ 1.
Now

󵄨󵄨󵄨󵄨f (x) − f (y)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
x2

x2 + 1
−

y2

y2 + 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
|x − y||x + y|
(x2 + 1)(y2 + 1)

≤
|x − y|(|x| + |y|)
(x2 + 1)(y2 + 1)

≤
|x − y|((x2 + 1) + (y2 + 1))
(x2 + 1)(y2 + 1)

= |x − y|( 1
x2 + 1
+

1
y2 + 1
)

≤ 2|x − y|.

Therefore by Proposition 3.1.28 f is uniformly continuous.

Example 3.1.30. Let (X , d) be a metric space, and let A be a fixed nonempty set in X .
Consider the map f : X → ℝ defined by f (x) = d(x,A). By Proposition 2.5.3, for x, y ∈ X ,
we have

d(x,A) − d(y,A) ≤ d(x, y).

Interchanging the role of x and y, we get

d(y,A) − d(x,A) ≤ d(x, y).
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This shows that

󵄨󵄨󵄨󵄨f (x) − f (y)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨d(x,A) − d(y,A)

󵄨󵄨󵄨󵄨 ≤ d(x, y).

By Proposition 3.1.28 f is uniformly continuous.

Proposition 3.1.31 (Urysohn’s lemma). Let F1 and F2 be disjoint closed subsets of a metric
space X. Then there is a continuous map f : X → [−1, 1] such that

f −1({−1}) = F1 and f −1({1}) = F2.

Proof. Define the map f : X → [−1, 1] by

f (x) = d(x, F1) − d(x, F2)
d(x, F1) + d(x, F2)

.

First, observe that d(x, F1)+d(x, F2) ̸= 0 for all x ∈ X . On the contrary, suppose that there
is x ∈ X such that

d(x, F1) + d(x, F2) = 0.

Then d(x, F1) = 0 and d(x, F2) = 0. This implies that x ∈ Cl F1 ∩ Cl F2 = F1 ∩ F2 = 0, a
contradiction. By Example 3.1.30 and Proposition 3.1.25 f is continuous.

Note that

f (x) = −1⇔ d(x, F1) = 0⇔ x ∈ Cl F1 = F1

and

f (x) = 1⇔ d(x, F2) = 0⇔ x ∈ Cl F2 = F2.

Recall that for normed spaces V andW over a field 𝔽, B(V ,W ) denotes the set of all
linear transformations T : V → W such that there exists k > 0 such that ‖T(x)‖ ≤ k‖x‖
for all x ∈ V .

Proposition 3.1.32. Let V andW be normed spaces, and let T : V → W be a linear trans-
formation. Then the following statements are equivalent:
(i) T is uniformly continuous;
(ii) T is continuous;
(iii) T is continuous at 0;
(iv) T ∈ B(V ,W ).

Proof. The implications (i)⇒ (ii) and (ii)⇒ (iii) are obvious.Wewill now prove (iii)⇒
(iv).
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Assume (iii). For ϵ = 1, there exists δ > 0 such that for all x ∈ V ,

‖x‖ < δ ⇒ 󵄩󵄩󵄩󵄩T(x)
󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩T(x) − T(0)

󵄩󵄩󵄩󵄩 < 1.

Suppose that x ̸= 0. Let y = x
‖x‖ . Note that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
δy
3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
=
δ
3
< δ.

This implies that

δ
3
󵄩󵄩󵄩󵄩T(y)
󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
T(δy

3
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
< 1.

This shows that

󵄩󵄩󵄩󵄩T(x)
󵄩󵄩󵄩󵄩 <

3
δ
‖x‖.

For x = 0, the condition ‖T(x)‖ ≤ 3
δ ‖x‖ trivially holds. Therefore T ∈ B(V ,W ).

Assume (iv). Then there is a positive real number k such that ‖T(x)‖ ≤ k‖x‖ for all
x ∈ V . Now for all x, y ∈ V , we have

󵄩󵄩󵄩󵄩T(x − y)
󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩T(x) − T(y)

󵄩󵄩󵄩󵄩 ≤ k‖x − y‖.

By Proposition 3.1.28 T is uniformly continuous.

Let V andW be two normed spaces, and let T : V → W be a linear transformation.
Then the set

Ker T = {x ∈ V | T(X) = 0}

is called the kernel of T . We can check that Ker T is a subspace of V . Note that Ker T =
T−1({0}). This shows that if the linear transformation T is continuous, then Ker T is a
closed subspace of V . Let us observe the converse of this statement in the following
case.

Proposition 3.1.33. Let V be a normed space, and let f : V → 𝔽 be a linear functional. If
Ker f is closed, then f is continuous.

Proof. If f (x) = 0 for all x ∈ V , then f is continuous. Suppose that f is a nonzero map.
Let ϵ > 0. Let

Uϵ = {x ∈ V |
󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨 < ϵ}.
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Let w ∈ V be such that f (w) ̸= 0. Let u = w
f (w) . Then f (u) = 1. This implies that u ∉ Ker f .

Therefore ϵu ∉ Ker f , that is, ϵu ∈ V \ Ker f . Since Ker f is closed, there is an open ball
B(ϵu, r) contained in V \ Ker f .

Let x ∈ B(0, r). We claim that x ∈ Uϵ . On the contrary, suppose that x ∉ Uϵ . Then
|f (x)| ≥ ϵ. Let y = −ϵxf (x) . Then

‖y‖ = ϵ
|f (x)|
‖x‖ ≤ ‖x‖ < r.

This implies that y ∈ B(0, r). Therefore y + ϵu ∈ B(ϵu, r). Note that

f (y + ϵu) = f (y) + ϵf (u) = 0.

This is a contradiction as y + ϵu ∈ V \ Ker f . Hence x ∈ Uϵ . Since x ∈ B(0, r), B(0, r) ⊆ Uϵ .
Equivalently, we have

‖x − 0‖ < r ⇒ 󵄨󵄨󵄨󵄨f (x) − f (0)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨 < ϵ.

Therefore f is continuous at 0. Since f is linear, f is continuous.

Theorem 3.1.34. Let V be a normed space. Then every linear functional f : V → 𝔽 is
continuous if and only if every subspace of V is closed.

Proof. Suppose every subspace of V is closed. Let f : V → 𝔽 be a linear functional. Then
Ker f is closed. By Proposition 3.1.33 f is continuous.

Conversely, suppose that every linear functional f : V → 𝔽 is continuous. LetW be
a subspace of V . IfW = V , then it is closed. Suppose thatW is a proper subspace of V .
Consider a basis {vα | α ∈ 𝒜} ofW . Extend this to a basis

{vα | α ∈ 𝒜} ∪ {vβ | α ∈ ℬ}

of V , where 𝒜 ∩ ℬ = 0. For each i ∈ 𝒜 ∪ ℬ, define the linear functional fi : V → 𝔽 by
fi(vj) = δij , where δij is the Kronecker delta function. By assumption each fi is continuous
for each i ∈ 𝒜 ∪ ℬ. We claim that

W = ⋂
i∈ℬ

Ker fi.

Clearly,W ⊆ Ker fi for all i ∈ ℬ. Then

W ⊆ ⋂
i∈ℬ

Ker fi.

Conversely, suppose that x ∈ ⋂i∈ℬ Ker fi. Express x = ∑i∈𝒜∪ℬ xivi, where the expression
is a finite sum. Since fi(x) = 0 for each i ∈ ℬ, we get x = ∑i∈𝒜 xivi. This implies that
x ∈ W . Therefore
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⋂
i∈ℬ

Ker fi ⊆ W .

Hence

W = ⋂
i∈ℬ

Ker fi.

Since each Ker fi is closed,W is closed.

Definition 3.1.35. Let (X , dX ) and (Y , dY ) be metric spaces. Let A be a nonempty set in
X , and let a ∈ X be a limit point of A. Then l ∈ Y is called a limit of a map f : A→ Y as x
tends to a if for each ϵ > 0, there exists δ > 0 such that for all x ∈ A,

0 < dX (x, a) < δ ⇒ dY (f (x), l) < ϵ.

This definition may be reformulated as follows.
A point l ∈ Y is called a limit of a map f : A → Y as x tends to a limit point a of A if

for each ϵ > 0, there exists δ > 0 such that

f (B(a, δ) \ {a}) ⊆ B(l, ϵ).

If l ∈ Y is a limit of a map f : A→ Y as x tends to a, then we represent this as

lim
x→a

f (x) = l

or

f (x)→ l as x → a.

Note 3.1.36. Note that a limit of a map f : A → Y is defined at a limit point of A, which
may be outside A.

Example 3.1.37. Let A = {(x, y) | x2 + y2 < 1} ⊆ ℝ2, and let f : A→ ℝ3 be defined as

f (x, y) = (x2, 2y, x + y).

Then we can observe that

lim
(x,y)→(1,0)

f (x, y) = (1, 0, 1).

Example 3.1.38. Let f : (0, 1)→ ℝ be defined by f (x) = 1
x . Then we can observe that the

limit of f does not exist as x tends to 0.

Proposition 3.1.39. Let X and Y be metric spaces, and let A ⊆ X. If a limit of a map
f : A→ Y exists, then it is unique.
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Proof. Let a be a limit point ofA. On the contrary, suppose that l1 and l2 are two different
limits of f as x tends to a. This implies that ϵ = d(l1, l2) > 0. Then there are real numbers
δ1 > 0 and δ2 > 0 such that

0 < d(x, a) < δ1 ⇒ d(f (x), l1) <
ϵ
2

and

0 < d(x, a) < δ2 ⇒ d(f (x), l2) <
ϵ
2
.

Let δ = min{δ1, δ2}. Then for x ∈ A such that 0 < d(x, a) < δ, we have

ϵ = d(l1, l2)
≤ d(f (x), l1) + d(f (x), l2)

<
ϵ
2
+
ϵ
2

= ϵ,

a contradiction.

Note that we have defined the notion of a limit at a limit point. A map f : A → Y
may be continuous at a point a ∈ Awithout having a limit at that point if a is not a limit
point of A. Let us see what happens if we had defined the notion of a limit at any point
of A.

Let d1 and d2 denote the discrete and usual metrics on ℝ, respectively. Define f :
(ℝ, d1) → (ℝ, d2) by f (x) = x2. Since the domain of f is equipped with the discrete
metric, f is continuous map. Note that D(ℝ) = 0 in (ℝ, d1). Let us try to find the limit
of the map f , say at 0. Note that the open ball B(0, 12 ) = {0} in (ℝ, d1). Let l be any real
number, and let ϵ > 0. Then

0 = f(B(0, 1
2
)\ {0}) ⊆ B(l, ϵ) = (l − ϵ, l + ϵ).

This shows that all the real numbers are the limits of the map f . This is a contradiction
on the uniqueness of the limit if it exists. If a ∈ A is a limit point and f is continuous at
a, then

lim
x→a

f (x) = f (a).

3.2 Homeomorphisms

In the previous section, we saw that a map f : X → Y is continuous if and only if the
inverse image of each open (closed) set in Y is open (closed) in X . We are now interested
in a map that sends an open (closed) set to an open (closed) set.
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Definition 3.2.1. Let X and Y be metric spaces. Then f : X → Y is called an open map if
f (U) is open in Y for every open set U in X .

Definition 3.2.2. Let X and Y be metric spaces. Then f : X → Y is called a closed map if
f (F) is closed in Y for every closed set F in X .

Example 3.2.3. Consider the inclusionmap i : [0, 1]→ ℝ. Note that [0, 12 ) is open in [0, 1]
but is not open in ℝ. This shows that i is not an open map. Note that the inclusion map
i : [0, 1]→ ℝ is a closed map.

Example 3.2.4. The inclusion map i : (0, 1)→ ℝ is not a closed map but is an open map.

Example 3.2.5. The identity map I : (X , d1) → (X , d), where d is the discrete metric, is
an open and closed map.

Observe that the composition of open (closed) maps is an open (a closed) map.

Proposition 3.2.6. Let X and Y be metric spaces. If f : X → Y is a map such that f (B) is
an open set in Y for each open ball B in X, then f is an open map.

Proof. Let U be an open set in X . Then U is a union of open balls around each point of
U that are contained in U . The proof follows from the fact that

f(⋃
α∈I

Aα) = ⋃
α∈I

f (Aα),

where {Aα | α ∈ I} is a family of sets in X .

Proposition 3.2.7. Let X and Y be metric spaces. Then f : X → Y is an open map if and
only if for each set A in X,

f (IntA) ⊆ Int f (A).

Proof. Let f : X → Y be an open map, and let A ⊆ X . Then f (IntA) is an open set in Y .
Since IntA ⊆ A, f (IntA) ⊆ f (A). This implies that

f (IntA) ⊆ Int f (A).

Conversely, suppose that for each set A in X ,

f (IntA) ⊆ Int f (A).

Let U be an open set in X . Then

f (U) = f (IntU) ⊆ Int f (U) ⊆ f (U).

This shows that f (U) is open in Y . Hence f is an open map.
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Using a similar argument, we can prove the following statement. The proof is left
as an exercise.

Proposition 3.2.8. Let X and Y be metric spaces. Then f : X → Y is a closed map if and
only if for each set A in X,

ClA ⊆ f (ClA).

Proposition 3.2.9. Let f be a closed map from a metric space X to a metric space Y . Let
A ⊆ Y, and let U be an open set of X such that f −1(A) ⊆ U. Then there is an open set V of
Y such that

A ⊆ V and f −1(V ) ⊆ U .

Proof. Let V = Y \ f (X \ U). Since f is a closed map, f (X \ U) is closed in Y . Therefore V
is open in Y .

Let y ∈ A. Then

f −1({y}) ⊆ f −1(A) ⊆ U .

Therefore y ∈ f (U). This shows that

y ∉ f (X \ U).

In other words,

y ∈ Y \ f (X \ U) = V .

Therefore A ⊆ V . We can easily observe that

f −1(V ) ⊆ U .

Definition 3.2.10. LetX and Y bemetric spaces. Then a bijectivemap f : X → Y is called
a homeomorphism if both f and f −1 : Y → X are continuous.

The metric spaces X and Y are called homeomorphic if there is a homeomorphism
from X to Y . Note the following:
– The identity map between the same metric spaces is a homeomorphism.
– If f : X → Y is a homeomorphism, then f −1 : Y → X is a homeomorphism.
– The composition of homeomorphisms is a homeomorphism.

Therefore the relation of being homeomorphic is an equivalence relation in a set of
metric spaces.
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Proposition 3.2.11. The metric spaces X and Y are homeomorphic if and only if there
exist continuous maps

f : X → Y and g : Y → X

such that

g ∘ f = IX and f ∘ g = IY .

Proof. Left as an exercise.

Proposition 3.2.12. Let X and Y be metric spaces, and let f : X → Y be a bijective map.
Then f is a homeomorphism if and only if f is a continuous and open map.

Proof. Suppose that f is a homeomorphism. LetU be an open set in X . Since f −1 : Y → X
is continuous, f (U) = (f −1)−1(U) is open in Y . Therefore f is open.

Conversely, suppose that f is continuous and open. Let U be an open set in X . Since
(f −1)−1(U) = f (U) and f is open, f −1 : Y → X is continuous. Therefore f is homeomor-
phism.

Since for a bijective map f : X → Y , the notion of an open map is the same as that
of a closed map, we have the following:

Proposition 3.2.13. Let X and Y be metric spaces, and let f : X → Y be a bijective map.
Then f is a homeomorphism if and only if f is a continuous and closed map.

Example 3.2.14. Let a, b, c, d ∈ ℝ be such that a < b and c < d. Suppose the open inter-
vals (a, b) and (c, d) are with the subspace metric induced from the usual metric on ℝ.
Define the map f : (a, b)→ (c, d) by the formula

f (x) − c
x − a
=
d − c
b − a
.

We can represent this function as

f (x) = c + d − c
b − a
(x − a).

By Proposition 3.1.25, f is continuous. Observe that f is bijective and the inverse map
f −1 : (c, d)→ (a, b) is given by

f −1(y) = a + b − a
d − c
(y − c).

By Proposition 3.1.25, f −1 is continuous. This shows that (a, b) is homeomorphic to (c, d).

Example 3.2.15. Consider the map f defined in Example 3.2.14. Note that f (a) = c and
f (b) = d. This shows that the closed intervals [a, b] and [c, d] are homeomorphic.
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Example 3.2.16. Define the map f : ℝ→ (−1, 1) by

f (x) = x
1 + |x|
.

Consider the map g : (−1, 1)→ ℝ given by

g(y) = y
1 − |y|
.

Note that g ∘f = Iℝ and f ∘g = I(−1,1). The denominator of the value of f is the composition
of two continuous maps x 󳨃→ |x| and x 󳨃→ 1− x. By Proposition 3.1.25(iii), f is continuous.
Similarly, g is continuous. This shows that (−1, 1) is homeomorphic to the real line ℝ.

Example 3.2.17. The map f : (0, 1)→ (1,∞) defined by f (x) = 1
x is a homeomorphism.

Example 3.2.18. Let a be a positive real number. Then the map f : (1,∞) → (a,∞)
defined by f (x) = ax is a homeomorphism.

Example 3.2.19. Let a ∈ ℝ. Then the map f : (a,∞)→ (−∞,−a) defined by f (x) = −x is
a homeomorphism.

Example 3.2.20. Consider the usual norm onℝn. Let r be a positive real number. Define
the map f : B(0, r)→ ℝn by

f (x) = x
r − ‖x‖
.

Note that f is continuous and the inverse map f −1 : ℝn → B(0, r) given by

f −1(y) = ry
1 + ‖y‖

is also continuous. This shows that the open ball B(0, r) is homeomorphic to ℝn.

Example 3.2.21. Consider A = {(x, y) ∈ ℝ2 | max{|x|, |y|} = 1} and 𝕊1 = {(x, y) ∈ ℝ2 |
x2 + y2 = 1} as subspaces of ℝ2. Define the map f : A→ 𝕊1 by

f (x, y) = (x, y)

√x2 + y2
.

Note that the map g : 𝕊1 → A defined by

g(x, y) = (x, y)
max{|x|, |y|}

is the inverse of f and f and g are continuousmaps. Therefore A is homeomorphic to 𝕊1.
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Theorem 3.2.22 (Tietze’s extension theorem). Let A be a closed set in a metric space, and
let f : A→ ℝ be a bounded continuous map. Then f can be extended to a bounded contin-
uous map ̃f : X → ℝ.

Proof. If f is constant, then we can define ̃f : X → ℝ to be the same constant map.
Suppose that f is not a constantmap. Since f is bounded, the codomain of f is some closed
interval [u, v]. Since closed intervals are homeomorphic to each other, we can compose
a suitable homeomorphism to get the codomain [1, 2]. Therefore we can assume that f
is a map from A to [1, 2]. Define the map ̃f : X → ℝ by

̃f (x) = {
f (x) if x ∈ A,
inf{f (y)d(x,y)|y∈A}

d(x,A) if x ∈ X \ A.

Note that 1 ≤ ̃f (x) ≤ 2 for all x ∈ X and ̃f |A= f . We claim that ̃f is continuous on X . Let
ϵ > 0 and a ∈ X . Then either a ∈ A or a ∈ X \ A. First, suppose that a ∈ A. Further, there
may be two possibilities, either a ∈ IntA or a ∈ BdA. Suppose that a ∈ IntA. Then there
exists δ1 > 0 such that B(a, δ1) ⊆ IntA. Note that ̃f (a) = f (a). Since f is continuous at a,
there is an open ball B(a, δ2) such that

f (B(a, δ2)) ⊆ (f (a) − ϵ, f (a) + ϵ).

Let δ = min{δ1, δ2}. Then

f (B(a, δ)) ⊆ (f (a) − ϵ, f (a) + ϵ).

This implies that

̃f (B(a, δ)) ⊆ ( ̃f (a) − ϵ, ̃f (a) + ϵ).

Therefore ̃f is continuous at a.
Now suppose that a ∈ BdA ⊆ A. Since f continuous at a, there is an open ball B(a, δ)

in X such that

f (B(a, δ) ∩ A) ⊆ (f (a) − ϵ, f (a) + ϵ). (3.4)

This implies that

̃f(B(a, δ
4
) ∩ A) ⊆ ( ̃f (a) − ϵ, ̃f (a) + ϵ). (3.5)

Since a is a boundary point of A, B(a, δ4 ) ∩ (X \ A) ̸= 0. Let y ∈ B(a,
δ
4 ) ∩ (X \ A). Now we

claim that

inf{f (x)d(x, y) | x ∈ A} = inf{f (x)d(x, y) | x ∈ B(a, δ) ∩ A}. (3.6)



3.2 Homeomorphisms � 93

If x ∉ B(a, δ) ∩ A, then

d(x, y) ≥ d(x, a) − d(a, y)

> δ − δ
4

=
3δ
4
.

Since f (x) ≥ 1 for all x ∈ A,

inf{f (x)d(x, y) | x ∈ B(a, δ) ∩ A} ≥ 3δ
4
. (3.7)

Also, note that a ∈ B(a, δ) ∩ A. Then

f (a)d(a, y) ≤ 2d(a, y)

< 2δ
4

<
3δ
4
. (3.8)

By equations (3.7) and (3.8), (3.6) holds. Similarly,

inf{d(x, y) | x ∈ B(x, δ) ∩ A} = inf{d(x, y) | x ∈ A}
= d(y,A). (3.9)

By quation (3.4), for x ∈ B(a, δ) ∩ A, we have

f (a) − ϵ < f (x) < f (a) + ϵ.

This implies that

(f (a) − ϵ)d(y,A) ≤ inf{f (x)d(x, y) | x ∈ B(x, δ) ∩ A}
≤ (f (a) + ϵ)d(y,A).

By equation (3.6) we have

(f (a) − ϵ)d(y,A) ≤ inf{f (x)d(x, y) | x ∈ A}
≤ (f (a) + ϵ)d(y,A).

This implies that

(f (a) − ϵ) ≤ inf{f (x)d(x, y) | x ∈ A}
d(y,A)

≤ (f (a) + ϵ).

Since ̃f (a) = f (a),
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̃f (B(a, δ) ∩ (X \ A)) ⊆ ( ̃f (a) − ϵ, ̃f (a) + ϵ). (3.10)

By equations (3.5) and (3.10) we observe that ̃f is continuous at a ∈ BdA.
Finally, suppose that a ∈ X \ A. Define the map g : X \ A→ ℝ by

g(y) = inf{f (x)d(x, y) | x ∈ A}.

We claim that g is continuous at a. Take y ∈ X \ A such that d(y, a) < ϵ
4 . Then for x ∈ A,

we have

d(a, x) ≤ d(a, y) + d(y, x) < ϵ
4
+ d(y, x).

Then

f (x)d(a, x) < f (x) ϵ
4
+ f (x)d(y, x) ≤ ϵ

2
+ f (x)d(y, x).

This implies that

inf{f (x)d(a, x) | x ∈ A} ≤ ϵ
2
+ inf{f (x)d(x, y) | x ∈ A}.

In other words,

g(a) ≤ ϵ
2
+ g(y).

Similarly,

g(y) ≤ ϵ
2
+ g(a).

This implies that

󵄨󵄨󵄨󵄨g(y) − g(a)
󵄨󵄨󵄨󵄨 ≤

ϵ
2
< ϵ.

Therefore g is continuous at a. Note that ̃f (x) = g(x)
d(x,A) on X \ A. Since x → d(x,A) is

continuous and d(x,A) > 0, ̃f is continuous at a ∈ X \ A.

Remark 3.2.23. The above proof is due to Diedonne [2].

We can relax the condition of boundedness of themap inTietze’s extension theorem.

Proposition 3.2.24. Let A be a closed set in a metric space, and let f : A→ ℝ be a contin-
uous map. Then f can be extended to a continuous map ̃f : X → ℝ.

Proof. Let a, b ∈ ℝ, and let ϕ : ℝ → (a, b) be a homeomorphism. Let ψ = ϕ ∘ f . Then
ψ : A → (a, b) ⊆ [a, b] is a continuous map. By Tietze’s extension theorem we have a
continuous extension ψ̃ : X → [a, b] ofψ. LetB = ψ̃−1{a, b}. ThenB is closed, andB∩A = 0.
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By Urysohn’s lemma there is a continuous map g : X → [0, 1] such that g(A) = 1 and
g(B) = 0. Let μ(x) = ψ̃(x)g(x). We can check that x → μ(x) defines a continuous map
from X to (a, b). Define the map ̃f : X → ℝ by ̃f (x) = ϕ−1(μ(x)). Then ̃f is continuous,
and for x ∈ A, we have

̃f (x) = ϕ−1(μ(x))

= ϕ−1(ψ̃(x)g(x))

= ϕ−1(ψ̃(x))

= ϕ−1(ψ(x))
= f (x).

Definition 3.2.25. Ametric space X is said be homeomorphically embedded in a metric
space Y if there is a map f : X → Y such that X is homeomorphic to the image f (X) as a
subspace of Y . Such amap f is called a homeomorphic embedding or simply embedding
of X in Y .

Example 3.2.26. Let ϕ : (0, 1) → ℝ be a homeomorphism. Then the map f : (0, 1) → ℝ2

defined by

f (x) = (ϕ(x), 0)

is a homeomorphic embedding.

Definition 3.2.27. A point a in a metric space X is called an isolated point if there is a
positive real number r such that

B(a, r) = {r}.

Example 3.2.28. In the discrete metric space, each point is an isolated point.

Example 3.2.29. Consider A = (0, 1) ∪ {2} as a metric space of the real line. Then {2} is
the only isolated point of A.

The real line is a metric space without isolated points. Also, the sets of rational and
irrational numbers are dense sets in the real line.

Proposition 3.2.30 (Sung Soo Kim). Let X be a metric space without isolated points. Then
X has a dense set whose complement is also dense.

Proof. For given ϵ > 0, consider a set Sϵ in X satisfying the following two properties:
(A) For any two distinct points x and y of Sϵ , d(x, y) ≥ ϵ,
(B) Sϵ is maximal with respect to (A).

Since X has no isolated points, Sϵ is nonempty. By Zorn’s lemma we can observe that
such a set exists for each ϵ > 0.
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We will inductively construct the disjoint sets S 1
n
for each n ∈ ℕ satisfying (A) and

(B). Consider a set S1 with the above properties. Suppose we have found the disjoint sets

S1, S 1
2
, . . . , S 1

n

satisfying (A) and (B). Note that

S1 ∪ S 1
2
∪ ⋅ ⋅ ⋅ ∪ S 1

n

is nonempty and has no isolated point. Then there is a set S 1
n+1 satisfying the above prop-

erties that is disjoint from

S1 ∪ S 1
2
∪ ⋅ ⋅ ⋅ ∪ S 1

n
.

Let A = ⋃∞n=1 S 1
2n
and B = ⋃∞n=1 S 1

2n−1 . Observe that A and B are dense in X , A ∩ B = 0, and
A ∪ B = X .

The set ℚ of rational numbers as a subspace of the real line is a countable metric
space without isolated points. We will show that such a metric space is unique up to
homeomorphism. The following theorem was originally proved by Sierpinski, but we
presentg the proof of Sierpinski’s theorem given by F. K. Dashiell Jr. [1]. We recommend
the reader to draw the figure while reading the proof of the following theorem. Let us
first define the setWG of all the words consisting of the symbols B and G such that the
first letter is G. In other words,

WG = {G,GB,GG,GBB,GGB, . . . }.

For t ∈ WG, the length |t| of the word t is defined as the number of letters appeared
in t. For example, |GBBGB| = 5. Note that there are 2n−1 words of length n. We say that
a word t ∈ WG is blue (respectively, green) if the last letter of t is B (respectively, G).
For example, t = GBBBGB is blue. By tG (respectively, tB) we mean that the word t is
extended by adding the letter G (respectively, B) in the last. For example, if t = GBGBBG,
then tB = GBGBBGB.

Theorem 3.2.31 (Sierpinski’s theorem). Let (X , dX ) and (Y , dY ) be countablemetric spaces
without isolated points. Then X and Y are homeomorphic.

Proof. Let

X = {x1, x2, . . . }

and

Y = {y1, y2, . . . }.



3.2 Homeomorphisms � 97

Let

D = {dX (xn, xm) | n ̸= m} ∪ {dY (yn, ym) | n ̸= m}.

For each nonempty set U of X (respectively, Y ), define

μ(U) = xk (respectively, μ(U) = yk),

where k = min{i | xi ∈ U} (respectively, k = min{i | yi ∈ U}).
For each nonempty set U of X or Y and for r > 0, define the sets

B(U , r) = B(μ(U), r) and G(U , r) = U \ B(U , r).

Let U be a nonempty open set of X . Let x = μ(U). Since x is not an isolated point, there
is a point y ∈ U such that y ̸= x. Choose 0 < r < dX (x, y) with r ∉ D such that

B(U , r) = B(x, r) ⊆ U .

Therefore y ∈ U \ B(U , r) = G(U , r). This implies that G(U , r) is nonempty. Since r ∉ D,

G(U , r) = {z ∈ U | dX (x, z) > r}.

Therefore G(U , r) is open. Thus, for sufficiently small r > 0, B(U , r) and G(U , r) partition
U into two nonempty open sets whenever U is open in X . A similar argument holds for
an open set in Y .

Now we will describe a sequence of partitions of X and Y into nonempty open sets
inductively on the length of words t ∈ WG.

Let UG = X and VG = Y . Using the mathematical induction on the length of t ∈ WG,
suppose that we have described the open sets Ut and Vt of X and Y , respectively, for all
t ∈ WG with |t| = n ≥ 1. Define

UtB = B(Ut , rn+1) and UtG = G(Ut , rn+1),

where rn+1 <
1

n+1 . Also, define

VtB = B(Vt , rn+1) and VtG = G(Vt , rn+1),

where rn+1 <
1

n+1 .
Suppose that x ∈ X is such that x = μ(Ut) for some green t ∈ WG. Then x becomes

the center of the open balls Us for all s ∈ {tB, tBB, . . . }. Therefore we have a decreasing
sequence of open balls centered at x with the radii tending to zero. This shows that each
x ∈ X is associated with a unique green t ∈ WG. We can similarly argue for each y ∈ Y .
Therefore this defines the bijective map f : X → Y by
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f (μ(Ut)) = μ(Vt) for green t ∈ WG.

Note that f (Ut) = Vt for all t ∈ WG. Let f (x) = y. Let x ∈ Ut and y ∈ Vt , where t ∈ WG is
blue. Then for ϵ > 0, we can find δ > 0 such that

f (B(x, δ)) ⊆ B(y, ϵ).

This shows that f is continuous. We can similarly show that f −1 : Y → X is also continu-
ous. Hence f is a homeomorphism.

Corollary 3.2.32. Let (X , dX ) be a countable metric space. Then X is homeomorphically
embedded in the subspaceℚ of the real line.

Proof. Consider X ×ℚ with the metric

d((x, r), (y, s)) = dX (x, y) + |r − s|.

Since X × ℚ has no isolated points, by Theorem 3.2.31, X × ℚ is homeomorphic to ℚ.
Note that X is homeomorphically embedded in X ×ℚ. Therefore X is homeomorphically
embedded inℚ.

For a metric space X , let Homeo(X) denote the set of all homeomorphisms from X
to X . We can check that Homeo(X) is a group with respect to the composition of maps.

Proposition 3.2.33. Let (a, b) and [a, b] be the metric spaces considered as the subspaces
of the real line. Then the group Homeo([a, b]) is isomorphic to the group Homeo((a, b)).

Proof. Let f ∈ Homeo([a, b]). Then we can check that the restriction of f on (a, b) is a
member of Homeo((a, b)). Conversely, everymember f ∈ Homeo((a, b)) can be uniquely
extended to a homeomorphism f : [a, b]→ [a, b] defined by

f (x) =
{{{
{{{
{

f (x) if x ∈ (a, b),
limx→a f (x) if x = a,
limx→b f (x) if x = b.

Now we can easily check that the group Homeo([a, b]) is isomorphic to the group
Homeo((a, b)).

Define d̃ : Homeo([a, b]) × Homeo([a, b])→ ℝ by

d̃(f , g) = sup{󵄨󵄨󵄨󵄨f (x) − g(x)
󵄨󵄨󵄨󵄨,
󵄨󵄨󵄨󵄨f
−1(x) − g−1(x)󵄨󵄨󵄨󵄨 | x ∈ [a, b]}.

We claim that d̃ is a metric on Homeo([a, b]). We will only prove the triangle inequality,
and the other conditions are left as an exercise. Let f , g, h ∈ Homeo([a, b]). Choose ϵ > 0.
Then there is a point x ∈ [a, b] such that
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d̃(f , g) ≤ 󵄨󵄨󵄨󵄨f (x) − g(x)
󵄨󵄨󵄨󵄨 + ϵ

or

d̃(f , g) ≤ 󵄨󵄨󵄨󵄨f
−1(x) − g−1(x)󵄨󵄨󵄨󵄨 + ϵ.

Then

d̃(f , g) ≤ 󵄨󵄨󵄨󵄨f (x) − g(x)
󵄨󵄨󵄨󵄨 + ϵ

≤ 󵄨󵄨󵄨󵄨f (x) − h(x)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨h(x) − g(x)

󵄨󵄨󵄨󵄨 + ϵ (3.11)

≤ d̃(f , h) + d̃(h, g) + ϵ,

or

d̃(f , g) ≤ 󵄨󵄨󵄨󵄨f
−1(x) − g−1(x)󵄨󵄨󵄨󵄨 + ϵ

≤ 󵄨󵄨󵄨󵄨f
−1(x) − h−1(x)󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨h
−1(x) − g−1(x)󵄨󵄨󵄨󵄨 + ϵ (3.12)

≤ d̃(f , h) + d̃(h, g) + ϵ.

Since ϵ > 0 is arbitrary, by (3.11) and (3.12) we have

d̃(f , g) ≤ d̃(f , h) + d̃(h, g).

The mathematicians have tried to understand the structure of the group Homeo([a, b]).
As an example, we give the following result by Fine and Schweigert [3]. We will not give
its proof. We recommend the author to go through [3] for details.

Theorem 3.2.34 (Fine and Schweigert). Every element ofHomeo([a, b])may bewritten as
a product of at most four involutions, and the number four is best possible.

Note that the map on Homeo([a, b]) sending an element to its inverse is contin-
uous. After we define the product metric, we can prove that the binary operation on
Homeo([a, b]) is also continuous.

3.3 Equivalent metrics

Definition 3.3.1. Themetrics d1 and d2 on a set X are called Lipschitz equivalent if there
are positive real numbersm andM such that

md1(x, y) ≤ d2(x, y) ≤ M d1(x, y)

for all x, y ∈ X .
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Example 3.3.2. Consider the metrics dp and d∞ on ℝn as defined in Examples 2.1.3
and 2.1.4. Let

x = (x1, . . . , xn) and y = (y1, . . . , yn) in ℝn.

Since

dp(x, y) ≥ |xi − yi| for all i = 1, . . . , n,

dp(x, y) ≥ max{|xi − yi| | 1 ≤ i ≤ n} = d∞(x, y).

Also,

dp(x, y) = (
n
∑
i=1
|xi − yi|

p)

1
p

≤ (
n
∑
i=1

d∞(x, y)
p)

1
p

= n
1
p d∞(x, y).

Therefore

d∞(x, y) ≤ dp(x, y) ≤ n
1
p d∞(x, y).

Hence, for each p ≥ 1, dp and d∞ are Lipschitz equivalent.

Example 3.3.3. Let ℝ be the real line. Let d be the metric on ℝ as defined in Exam-
ple 2.1.9. Then the usual metric on ℝ is not Lipschitz equivalent to d.

Definition 3.3.4. The metrics d1 and d2 on a set X are called topologically equivalent if
U is open in (X , d1) if and only if U is open in (X , d2).

Let τ1 and τ2 be the collection of all open sets in (X , d1) and (X , d2), respectively. Then
metrics d1 and d2 are topologically equivalent if τ1 = τ2. We say that two metric spaces
(X , d1) and (X , d2) are topologically equivalent if d1 and d2 are topologically equivalent.
Observe that the relations of being Lipschitz equivalent and topologically equivalent
are equivalence relations on a set of metrics on a set X . Also observe that metric spaces
(X , d1) and (X , d2) are topologically equivalent if and only if the identitymap I : (X , d1)→
(X , d2) is a homeomorphism. The following is an easy observation. Hence its proof is left
as an exercise.

Proposition 3.3.5. A metric space (X , d1) is topologically equivalent to a metric space
(X , d2) if and only if for each open ball Bd1 (x, ϵ) in (X , d1), there is an open ball Bd2 (x, δ) in
(X , d2) such that
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Bd2 (x, δ) ⊆ Bd1 (x, ϵ),

and for each open ball Bd2 (x, ϵ
′) in (X , d2), there is an open ball Bd1 (x, δ

′) in (X , d1) such
that

Bd1(x, δ
′) ⊆ Bd2(x, ϵ

′).

Proposition 3.3.6. If two metrics are Lipschitz equivalent, then they are topologically
equivalent.

Proof. Let d1 and d2 be two Lipschitz equivalent metrics on a set X . Then there are pos-
itive real numbersm andM such that

m d1(x, y) ≤ d2(x, y) ≤ M d1(x, y)

for all x, y ∈ X . Therefore for all x ∈ X and ϵ > 0, we have

Bd1 (x, ϵ) ⊆ Bd2 (x,Mϵ) and Bd2 (x,mϵ) ⊆ Bd1 (x, ϵ).

Hence, by Proposition 3.3.5, d1 is topologically equivalent to d2.

Example 3.3.7. Let d1 be the discretemetric onℕ, and let d2 be themetric onℕ induced
by the usual metric onℝ. Then d1 is topologically equivalent to d2 onℕ, but they are not
Lipschitz equivalent.

Proposition 3.3.8. Let (X , d) be a metric space, and let

d(x, y) = min{1, d(x, y)}

for x, y ∈ X. Then d and d are topologically equivalent.

Proof. Since d(x, y) ≤ d(x, y) for all x, y ∈ X , for each ϵ > 0 and x ∈ X , we have

Bd(x, ϵ) ⊆ Bd(x, ϵ).

Now, consider an open ball Bd(x, ϵ) in the metric space (X , d). Let δ = min{1, ϵ}. Note
that if d(x, y) < δ, then d(x, y) < 1. Therefore d(x, y) = d(x, y) < δ ≤ ϵ. This shows that if
y ∈ Bd(x, δ), then y ∈ Bd(x, ϵ). Hence

Bd(x, δ) ⊆ Bd(x, ϵ).

Thus, by Proposition 3.3.5, d and d are topologically equivalent.

Corollary 3.3.9. Each metric on a set X is topologically equivalent to a bounded metric
on X.
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Let ‖ ⋅ ‖1 and ‖ ⋅ ‖2 be two norms on a vector space V . Let d1 and d2 be metrics on
V induced by ‖ ⋅ ‖1 and ‖ ⋅ ‖2, respectively. We say that the norms ‖ ⋅ ‖1 and ‖ ⋅ ‖2 on V
are Lipschitz equivalent (respectively, topologically equivalent) if d1 and d2 are Lipschitz
equivalent (respectively, topologically equivalent). Clearly, ‖ ⋅ ‖1 and ‖ ⋅ ‖2 are Lipschitz
equivalent (respectively, topologically equivalent) if there are positive real numbers m
andM such that

m ‖x‖1 ≤ ‖x‖2 ≤ M ‖x‖1

for all x ∈ V .

Proposition 3.3.10. Any two norms ‖ ⋅ ‖1 and ‖ ⋅ ‖2 on a vector space V are Lipschitz
equivalent if they are topologically equivalent.

Proof. By Proposition 3.3.6 Lipschitz equivalent norms are topologically equivalent.
Conversely, suppose that ‖ ⋅ ‖1 and ‖ ⋅ ‖2 are topologically equivalent on a vector space V .
Then for each open ball Bd2 (x, ϵ), there is an open ball Bd1 (x, δ) such that

Bd1 (x, δ) ⊆ Bd2 (x, ϵ).

This implies that

x + Bd1 (0, δ) ⊆ x + Bd2 (0, ϵ).

Equivalently, we have

Bd1 (0, 1) ⊆ Bd2(0,
ϵ
δ
).

We claim that for all x ∈ X ,

‖x‖2 ≤
ϵ
δ
‖x‖1.

On the contrary, suppose that there is a ∈ X such that

‖a‖2 >
ϵ
δ
‖a‖1.

Then there is a real number k > 1 such that

‖a‖2 = k
ϵ
δ
‖a‖1.

Note that a ̸= 0; otherwise, 0 > 0, which is a contradiction. Let y = a
‖a‖1

. Then

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
y
k

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
=
ϵ
δ
.
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Also, note that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
y
k

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩1
=
1
k
< 1.

This shows that y
k ∈ Bd1 (0, 1) but

y
k ∉ Bd2 (0,

ϵ
δ ). This is a contradiction.

Again by the topological equivalence of the norms ‖ ⋅ ‖1 and ‖ ⋅ ‖2, for each open ball
Bd1 (x, ϵ

′), there is an open ball Bd2 (x, δ
′) such that

Bd2(x, δ
′) ⊆ Bd1(x, ϵ

′).

By a similar argument, for all x ∈ X , we have

‖x‖1 ≤
ϵ′

δ′
‖x‖2.

This implies that

δ′

ϵ′
‖x‖1 ≤ ‖x‖2 ≤

ϵ
δ
‖x‖1.

Hence ‖ ⋅ ‖1 and ‖ ⋅ ‖2 are Lipschitz equivalent.

Example 3.3.11. Consider the norms ‖⋅‖ and ‖⋅‖∞ on C[0, 1] as defined in Examples 2.2.8
and 2.2.9. Then ‖ ⋅ ‖ and ‖ ⋅ ‖∞ are not Lipschitz equivalent on C[0, 1]. On the contrary,
suppose that ‖ ⋅ ‖ and ‖ ⋅ ‖∞ are Lipschitz equivalent on C[0, 1]. Then for all f ∈ C[0, 1],
there are positive real numbersm andM such that

m‖f ‖ ≤ ‖f ‖∞ ≤ M‖f ‖.

In particular, take fn(x) = x
n, where n ∈ ℕ. Then we have

m
n + 1
≤ 1 ≤ M

n + 1
.

This is a contradiction.

Example 3.3.12. Consider a norm ‖ ⋅ ‖ on an infinite-dimensional vector space V . Let
f : V → 𝔽 be a discontinuous linear functional, where 𝔽 = ℝ or 𝔽 = ℂ. Define a new
norm ‖ ⋅ ‖f on V by

‖x‖f = ‖x‖ +
󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨.

Then ‖ ⋅ ‖ and ‖ ⋅ ‖f are not Lipschitz equivalent on V . Indeed, suppose, on the contrary,
that ‖ ⋅ ‖ and ‖ ⋅ ‖f are Lipschitz equivalent on V . Then for all x ∈ V , there are positive
real numbersm andM such that
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m‖x‖ ≤ ‖x‖f ≤ M‖x‖.

This implies that for all x ∈ V , we have

(m − 1)‖x‖ ≤ 󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨 ≤ (M − 1)‖x‖.

By Proposition 3.1.32, f is continuous. This is a contradiction.

Proposition 3.3.13. Let (X , d) be a metric space, and let f : [0,∞) → [0,∞) be con-
tinuous, subadditive, amenable, and increasing map. Then d and f ∘ d are topologically
equivalent.

Proof. Since f is continuous at 0, for each ϵ > 0, there is δ > 0 such that

0 ≤ aδ ⇒ f (a) < ϵ.

Taking a = d(x, y), we get

d(x, y) < δ ⇒ f ∘ d(x, y) < ϵ.

This shows that

Bd(x, δ) ⊆ Bf ∘d(x, ϵ).

Now let a, b ∈ [0,∞) be such that a ≤ 2b. Then

f (a) ≤ f (2b) ≤ 2f (b).

This implies that if

f (a) > 2f (b),

then

a > 2b.

Let ϵ′ > 0. Then taking a = ϵ′ and b = d(x, y), we get

f (d(x, y)) < f (ϵ
′)
2
⇒ d(x, y) < ϵ

′

2
< ϵ′.

This shows that

Bf ∘d(x,
f (ϵ′)
2
) ⊆ Bd(x, ϵ

′).

Thus d and f ∘ d are topologically equivalent.
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Example 3.3.14. Let f : [0,∞)→ [0,∞) be the map defined by

f (x) = x
1 + x
.

Note that f satisfies the conditions of Proposition 3.3.13. Therefore the metrics d and d
1+d

are topologically equivalent.

Proposition 3.3.15. Let f : [0,∞) → [0,∞) be a metric-preserving map. Then f ∘ d is
topologically equivalent to the discrete metric for every metric d if and only if f is discon-
tinuous at 0.

Proof. Suppose that f is discontinuous at 0. Let (X , d) be a metric space, and let x ∈ X .
By Proposition 2.3.13 there is ϵ > 0 such that

f (y) ≥ ϵ for all y > 0.

This implies that

Bf ∘d(x, ϵ) = {x}.

Hence f ∘ d is topologically equivalent to the discrete metric.
Conversely, suppose that f ∘ d is topologically equivalent to the discrete metric for

every metric d. Let d be the usual metric on ℝ. Let ϵ > 0 be such that

Bf ∘d(0, ϵ) = {0}.

Let δ be an arbitrary positive real number. Choose 0 ≤ x1, x2 < δ such that f (x1) ̸= f (x2).
Then one of f (x1) or f (x2) will not satisfy the condition f (x) < ϵ, since otherwise

f (x1), f (x2) ∈ Bf ∘d(f (0), ϵ) = Bf ∘d(0, ϵ) = {0},

a contradiction. Hence f is discontinuous at 0.

Proposition 3.3.16 (Borsik and Dobos). Let f : [0,∞) → [0,∞) be a metric-preserving
map. Then d and f ∘ d are topologically equivalent for every metric d if and only if f is
continuous at 0.

Proof. Suppose that d and f ∘d are topologically equivalent for everymetric d. Let du be
the usual metric onℝ. On the contrary, suppose that f is discontinuous at 0. By Proposi-
tion 3.3.15, f ∘ du is topologically equivalent to the discrete metric. This shows that du is
topologically equivalent to the discrete metric. This is a contradiction.

Conversely, suppose that f is continuous at 0. Let (X , d) be a metric space, and let
x ∈ X . Let ϵ > 0. Since f is continuous at 0, we can choose δ ≤ ϵ such that

0 ≤ y < δ ⇒ f (y) < ϵ.
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This implies that

Bd(x, δ) ⊆ Bf ∘d(x, ϵ).

Now let r > 0. By Proposition 2.3.14 there is ϵ > 0 such that

y ≥ r ⇒ f (y) ≥ ϵ.

This implies that

Bf ∘d(x, ϵ) ⊆ Bd(x, r).

Therefore d and f ∘ d are topologically equivalent.

Let x and y be nonzero points inℝn. Let ⟨x, y⟩ be the usual inner product onℝn. By
the Cauchy–Schwarz inequality we have

−1 ≤ ⟨x, y⟩
‖x‖‖y‖
≤ 1.

Since the cosine is continuous and strictly decreasing on [0, π], there is a unique angle
θ(x, y) with 0 ≤ θ(x, y) ≤ π such that

cos θ(x, y) = ⟨x, y⟩
‖x‖‖y‖
.

Consider the set

𝕊n = {x ∈ ℝn+1 | ‖x‖ = 1}.

This set is called the n-sphere or the unit sphere of dimension n.

Proposition 3.3.17. The map d𝕊n : 𝕊
n × 𝕊n → [0, π] ⊆ ℝ defined by

d𝕊n (x, y) = θ(x, y),

where cos θ(x, y) = ⟨x, y⟩, is a metric on 𝕊n.

Proof. By the definition, d𝕊n (x, y) ≥ 0. Clearly,

d𝕊n (x, y) = 0⇐⇒ ⟨x, y⟩ = 1.

Hence the equality holds in the Cauchy–Schwarz inequality. This implies that there is
α ∈ ℝ such that x = αy. Since ‖x‖ = ‖y‖ = 1, α = ±1. Also, since ⟨x, y⟩ = 1, α = 1. This
shows that

d𝕊n (x, y) = 0⇐⇒ x = y.
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Now since ⟨x, y⟩ = ⟨y, x⟩ and the cosine is injective on [0, π],

d𝕊n (x, y) = d𝕊n (y, x).

Now we will prove the triangle inequality. Let x, y, z ∈ 𝕊n. Then the dimension of the
subspace generated by x, y, and z in ℝn+1 is not greater than 3. By the Gram–Schmidt
process we get an orthogonal linear transformation U such that

U(x) = (1, 0, 0, . . . , 0), U(x) = (0, 1, 0, . . . , 0), and U(z) = (0, 0, 1, 0, . . . , 0).

Therefore, without loss of generality, we may assume that n = 2, that is, we can perform
all the calculations inℝ3. Suppose that for x, y ∈ ℝ3, x×y denotes the usual cross product.
Then

cos(θ(x, y) + θ(y, z)) = cos θ(x, y) cos θ(y, z) − sin θ(x, y) sin θ(y, z)
= ⟨x, y⟩⟨y, z⟩ − ‖x × y‖‖y × z‖
≤ ⟨x, y⟩⟨y, z⟩ − ⟨x × y, y × z⟩
= ⟨x, y⟩⟨y, z⟩ − ⟨x, y⟩⟨y, z⟩ + ⟨x, z⟩⟨y, y⟩
= ⟨x, z⟩ = cos θ(x, z).

Since the cosine is decreasing on [0, π],

θ(x, z) ≤ θ(x, y) + θ(y, z).

In other words,

d𝕊n (x, z) ≤ d𝕊n (x, y) + d𝕊n (y, z).

Observe that d𝕊n (x, y) is the arc length from x to y on the sphere traveled on the
greater circle (see Figure 3.1).

x

y
θ

Figure 3.1: The distance d𝕊n (x, y).
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For x, y ∈ 𝕊n ⊆ ℝn+1, let dℝn+1 (x, y) denote the distance between x and y induced by
the usual metric on ℝn+1.

Proposition 3.3.18. The metric d𝕊n and the induced Euclidean metric dℝn+1 on 𝕊n are Lip-
schitz equivalent.

Proof. Note that sin t ≤ t for t ≥ 0. Then for x, y ∈ Spn, we have

dℝn+1 (x, y)2 = ‖x − y‖2
= ‖x‖2 − 2⟨x, y⟩ + ‖y‖2

= 2 − 2⟨x, y⟩
= 2 − 2 cos d𝕊2 (x, y)

= 4 sin2(d𝕊
n (x, y)
2
)

≤ 4(d𝕊
n (x, y)
2
)
2

= d𝕊n (x, y)
2.

Therefore

dℝn+1 (x, y) ≤ d𝕊n (x, y).
Again, note that the derivative of

ϕ(t) = cos t − 1 + t
2

2

is 0 at t = 0 and positive for t > 0. This shows thatϕ(t) is increasing for t ≥ 0 andϕ(t) ≥ 0
for t ≥ 0. Using this fact and a similar argument, we get

sin t − t + t
3

6
≥ 0 for t ≥ 0.

This in turn implies that

1 − cos t − t
2

2
+
t4

24
≥ 0 for t ≥ 0.

Putting t = d𝕊n (x, y) above, we get

2 − 2 cos d𝕊n (x, y) ≥ d𝕊n (x, y)
2 −

d𝕊n (x, y)
4

12
.
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Hence

dℝn+1 (x, y) = ‖x − y‖2
= ‖x‖2 − 2⟨x, y⟩ + ‖y‖2

= 2 − 2⟨x, y⟩

= 2 − 2 cos d𝕊2 (x, y)

≥ d𝕊n (x, y)
2 −

d𝕊n (x, y)
4

12

≥ (1 − π
2

12
)d𝕊n (x, y)

2 (as d𝕊n (x, y) ≤ π).

This shows that d𝕊n and dℝn+1 on 𝕊n are Lipschitz equivalent.
Corollary 3.3.19. The metric d𝕊n and the induced Euclidean metric dℝn+1 on 𝕊n are topo-
logically equivalent.

Remark 3.3.20. The geometries of these twometric spaces are different. This topic is out
of the scope, so we will not discuss it here. As a general remark, we would like to men-
tion that the sum of internal angles of a triangle in such geometry other than Euclidean
geometry is not 180∘.

3.4 Isometry

Definition 3.4.1. The metric spaces (X , dX ) and (Y , dY ) are called metrically equivalent
or isometric if there exists a surjective map f : X → Y such that

dX (x, y) = dY (f (x), f (y))

for all x, y ∈ X . Such a map f is called an isometry between X and Y .

Note that an isometry is always injective and a surjective isometric embedding is
an isometry. Also, note that the relation of being isometric is an equivalence relation on
a set of metric spaces. By Example 2.1.15 we observe that if (X , d) is a metric space and
Y is a set that is in the bijective correspondence with X , then we can define a metric on
Y such that X is isometric to Y .

Example 3.4.2. Define the map f : (0, π)→ 𝕊1 by

f (θ) = (cos θ, sin θ).
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Clearly, f is injective. Let θ1, θ2 ∈ (0, π) with θ1 < θ2. Let x = (cos θ1, sin θ1) and y =
(cos θ2, sin θ2). Then

cos d𝕊1 (x, y) = ⟨x, y⟩

= cos θ1 cos θ2 + sin θ1 sin θ2
= cos(θ2 − θ1).

Since cosine is a bijection from (0, π) to (−1, 1),

d𝕊1 (x, y) = θ2 − θ1 = |θ2 − θ1|.

This shows that (0, π)with the metric induced by the usual metric on ℝ is isometrically
embedded in (𝕊1, d𝕊1 ).

Example 3.4.3. Define the map dl : (0,∞) × (0,∞)→ ℝ by

dl(x, y) = | log x − log y|.

We can check that dl is a metric on (0,∞) and the map f : (0,∞) → ℝ defined by
f (x) = log x is an isometry.

Example 3.4.4. Let d1 and d2 bemetrics onℕ as defined in Example 3.3.7. Then the iden-
tity map onℕ is not an isometry.

For ametric space (X , d), let Iso(X , d) denote the set of all isometries on X . When the
metric d is given, we denote it by Iso(X). Then Iso(X) forms a group under the composi-
tion ofmaps.We nowfind the group Iso(ℝn) of the isometries of the Euclidean spaceℝn.

Let A be an n × n real matrix, and let b ∈ ℝn. Viewing the element x ∈ ℝn as a
row matrix, we define the map f bA : ℝ

n → ℝn by f bA (x) = Ax
t + b, where xt denotes

the transpose of x. Note that the map f bA is uniquely determined by A and b. Indeed, let
f b1A1 = f

b2
A2
. Then for all x ∈ ℝn, we have

A1x
t + b1 = A2x

t + b2.

This implies that for all x ∈ ℝn, we have

(A1 − A2)x
t = b2 − b1.

Hence A1 = A2 and b1 = b2. An n × n real matrix A is called an orthogonal matrix if
AtA = I , where At is the transpose of A.

Proposition 3.4.5. Let A be an n × n real matrix, and let b ∈ ℝn. The map f bA : ℝ
n → ℝn

by f bA (x) = Ax
t + b is an isometry if and only if A is an orthogonal matrix.
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Proof. Note that f bA is an isometry if and only if the map ϕ : ℝn → ℝn defined by ϕ(x) =
Axt is an isometry. Also, ϕ is an isometry if and only if

󵄩󵄩󵄩󵄩ϕ(x)
󵄩󵄩󵄩󵄩 = ‖x‖

for all x ∈ ℝn. Now

󵄩󵄩󵄩󵄩ϕ(x)
󵄩󵄩󵄩󵄩 = ‖x‖⇐⇒

󵄩󵄩󵄩󵄩ϕ(x)
󵄩󵄩󵄩󵄩
2 = ‖x‖2

⇐⇒ ⟨ϕ(x),ϕ(x)⟩ = ⟨x, x⟩
⇐⇒ xAtAxt = xxt

⇐⇒ x(AtA − I)xt = 0.

Therefore f bA is an isometry if and only if A is an orthogonal matrix.

Proposition 3.4.6. Let f : ℝn → ℝn. Then the following statements are equivalent:
(i) f is an isometry such that f (0) = 0;
(ii) f preserves the inner product, that is, for all x, y ∈ ℝn,

⟨f (x), f (y)⟩ = ⟨x, y⟩;

(iii) f is linear transformation such that f (x) = Axt , where A is an orthogonal matrix.

Proof. Suppose that (i) holds. Let x, y ∈ ℝn. Then

󵄩󵄩󵄩󵄩f (x) − f (y)
󵄩󵄩󵄩󵄩 = ‖x − y‖.

Putting y = 0, for all x ∈ ℝn, we have

󵄩󵄩󵄩󵄩f (x)
󵄩󵄩󵄩󵄩 = ‖x‖.

Now

⟨f (x) − f (y), f (x) − f (y)⟩ = 󵄩󵄩󵄩󵄩f (x) − f (y)
󵄩󵄩󵄩󵄩
2

= ‖x − y‖2

= ⟨x − y, x − y⟩.

This implies that

⟨f (x), f (y)⟩ = ⟨x, y⟩. (3.13)

Now suppose that (ii) holds. Let x, y, z ∈ ℝn. Then
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⟨f (x + y), f (z)⟩ = ⟨x + y, z⟩
= ⟨x, z⟩ + ⟨y, z⟩
= ⟨f (x), f (z)⟩ + ⟨f (y), f (z)⟩
= ⟨f (x) + f (y), f (z)⟩. (3.14)

By equation (3.13) we can observe that

{f (e1), . . . , f (en)}

is an orthonormal basis ofℝn, where {e1, . . . , en} is the standard basis ofℝ
n. Hence, tak-

ing z = e1, . . . , en in equation (3.14), we get

f (x + y) = f (x) + f (y).

Let α ∈ ℝ. Then

⟨f (αx), f (y)⟩ = ⟨αx, y⟩
= α⟨x, y⟩
= α⟨f (x), f (y)⟩
= ⟨αf (x), f (y)⟩. (3.15)

By a similar argument we get

f (αx) = αf (x).

Therefore f is a linear transformation. Hence there exists an n × n real matrix A such
that f (x) = Axt . By the assumption, for all x ∈ ℝn,

⟨Axt ,Axt⟩ = ⟨x, x⟩.

This implies that for all x ∈ ℝn, we have

x(AtA − I)xt = 0.

Therefore A is an orthogonal matrix.
Suppose that (iii) holds. Let f (x) = Axt , where A is an orthogonal matrix. Then,

clearly, f (0) = 0. By a similar argument as in the proof of Proposition 3.4.5, f is an isom-
etry.

For a ∈ ℝn, let ta denote a map on ℝn defined by ta(x) = x + a. Clearly, ta is an
isometry.

Theorem 3.4.7. Let f ∈ Iso(ℝn). Then f = f bA for some orthogonal real matrix A and
b ∈ ℝn.
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Proof. Let f : ℝn → ℝn be an isometry. Let b = f (0). Define the map g : ℝn → ℝn

by g = t−b ∘ f . Note that g is isometry and g(0) = 0. By Proposition 3.4.6 there is an
orthogonal matrix A such that

g(x) = Axt .

Therefore

f (x) = Axt + b.

LetO(n,ℝ)denote the set of alln×n real orthogonalmatrices. ThenO(n,ℝ) is a group
under matrix multiplication. Define the binary operation on O(n,ℝ) × ℝn as follows:

(A1, b1)(A2, b2) = (A1A2, b1 + A1b2).

ThenO(n,ℝ)×ℝn is a group under this operation. We denote this group byO(n,ℝ)⋉ℝn.
We can check that the map ψ : O(n,ℝ) ⋉ ℝn → Iso(ℝn) defined by

ψ((A, b)) = f bA

is a group isomorphism.
Now we find the isometries of (𝕊n, d𝕊n ). Let x, y ∈ 𝕊

n. Then

⟨x, y⟩ = 1 − ‖x − y‖
2

2
.

This shows that f : (𝕊n, d𝕊n ) → (𝕊
n, d𝕊n ) is an isometry if and only if f : (𝕊n, dℝn+1 ) →

(𝕊n, dℝn+1 ) is an isometry. Therefore if f is an isometry of (𝕊n, d𝕊n ), then f (0) = 0.
Now suppose that g : ℝn+1 → ℝn+1 is an isometry such that g(0) = 0. Let x, y ∈ 𝕊n.

Then

⟨x, y⟩ = 1 − ‖x − y‖
2

2

= 1 − ‖g(x) − g(y)‖
2

2
= ⟨g(x), g(y)⟩.

This implies that

d𝕊n (x, y) = d𝕊n(g(x), g(y)).

Therefore the restriction of g on 𝕊n is an isometry of (𝕊n, d𝕊n ). Now suppose that h :
(𝕊n, d𝕊n )→ (𝕊

n, d𝕊n ) is an isometry. Let z1, z2 ∈ 𝕊
n. Then
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d𝕊n (x, y) = d𝕊n(h(x), h(y)).

Therefore

⟨x, y⟩ = ⟨h(x), h(y)⟩.

Note that each nonzero element x of ℝn+1 can be uniquely written as x = ‖x‖ x‖x‖ . De-
finethea map h : ℝn+1 → ℝn+1 by

h(x) = {
‖x‖h( x‖x‖ ) if x ̸= 0,
0 if x = 0.

Let x, y ∈ ℝn+1 be such that x ̸= 0 and y ̸= 0. Note that

⟨h(x), h(y)⟩ = ⟨‖x‖h( x
‖x‖
), ‖y‖h( y

‖y‖
)⟩

= ‖x‖‖y‖⟨h( x
‖x‖
), h( y
‖y‖
)⟩

= ‖x‖‖y‖⟨ x
‖x‖
,
y
‖y‖
⟩ (3.16)

= ⟨x, y⟩.

If x = 0 or y = 0, then equation (3.16) is obviously true. Nowwe claim that h is surjective.
Let y ∈ ℝn+1. We have to find x ∈ ℝn+1 such that h(x) = y. If y = 0, then x = 0. Suppose
that y ̸= 0. Note that if such x exists, then x ̸= 0. This implies that for such x, we have
‖x‖h( x‖x‖ ) = y. Since h(

x
‖x‖ ) ∈ 𝕊

n, ‖x‖ = ‖y‖. This shows that we have to find x ∈ Rn+1 such
that h( x‖x‖ ) =

y
‖y‖ . This is possible as h is an isometry.

Therefore, by Proposition 3.4.6, h is an isometry such that h(0) = 0. Hence the isome-
tries of (𝕊n, d𝕊n ) are precisely the restrictions of the isometries of ℝ

n+1 fixing the origin.
Thus the group Iso((𝕊n, d𝕊n )) is isomorphic to the group O(n + 1,ℝ).

Consider the metric space (ℝn, dp) (1 ≤ p ≤∞) of Examples 2.1.3 and 2.1.4. Note that
the metric dp is induced by the norm. We have obtained the isometries of (ℝn, dp) for
p = 2 in Theorem 3.4.7. We have observed that the linear transformation ofℝn that is an
isometry is the map f : ℝn → ℝn given by f (x) = Axt , where A is an orthogonal matrix.
Nowwewill obtain the isometries of (ℝn, dp) (1 ≤ p ≤∞) that are linear transformations
ofℝn. Wewill call such an isometry a linear isometry. If a linear isometry exists between
the normed spaces V andW , then V andW are called linearly isometric spaces.

Let S ⊆ ℝn. A point x ∈ S is called an extreme point of S if x cannot be written as
αa + (1 − α)b with a, b ∈ S, a ̸= b, and 0 < α < 1. Let {e1, . . . , en} be the standard basis of
ℝn. Let Ep denote the set of the extreme points of the unit ball Bdp (0, 1) in (ℝ

n, dp). Then
we can check that
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Ep =
{{{
{{{
{

{±ei | 1 ≤ i ≤ n} if p = 1,
{x ∈ ℝn | ‖x‖p = 1} if 1 < p <∞,
{(±1, . . . ,±1) | 1 ≤ i ≤ n} if p =∞.

Therefore

|Ep| = {
2n if p = 1,
2n if p =∞,

and Ep is an uncountable set if 1 < p <∞.

Proposition 3.4.8. Let V and W be linearly isometric normed spaces. Then the sets of
extreme points of the unit balls BV (0, 1) and BW (0, 1) in V and W, respectively, are in a
bijective correspondence.

Proof. Let f : V → W be a linear isometry. Let x ∈ BV (0, 1) be such that x is not an ex-
treme point of BV (0, 1). Then there exist a, b ∈ BV (0, 1)with a ̸= b and 0 < α < 1 such that

x = αa + (1 − α)b.

This implies that

f (x) = αf (a) + (1 − α)f (b).

Note that f (a), f (b) ∈ BW (0, 1) and f (a) ̸= f (b). This shows that f (x) is not an extreme
point of BW (0, 1).

We can similarly show that if y ∈ BW (0, 1) is not an extreme point of BW (0, 1) with
f (x) = y, then x in not an extreme point of BV (0, 1). This shows that the set of extreme
points of BV (0, 1) is in a bijective correspondence with the set of extreme points of
BW (0, 1).

Using Proposition 3.4.8, we can observe that the metric spaces (ℝn, d1) and (ℝ
n, d∞)

cannot be linearly isometric to (ℝn, dp) (1 < p < ∞). Similarly, (ℝ
n, d∞) cannot be lin-

early isometric to (ℝn, d1) if n ≥ 3, since 2
n > 2n for n ≥ 3. For n = 1, the metrics d1

and d∞ coincide, and we can check that the map f : (ℝ2, d1) → (ℝ
2, d∞) defined by

f (x, y) = (x − y, x + y) is a linear isometry.

Theorem 3.4.9 (Hemasinha and Weaver). Let f : (ℝn, d1)→ (ℝ
n, d1) be a linear isometry.

Then f (ei) = ±ej for 1 ≤ i, j ≤ n.

Proof. Since f is bijective linear transformation, it sends a basis of ℝn to a basis of ℝn.
Since the set of extreme points of the unit ball B(0, 1) in (ℝn, d1) is

{±ei | 1 ≤ i ≤ n},

by Proposition 3.4.8, f (ei) = ±ej .
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Theorem 3.4.10 (Hemasinha and Weaver). Let f : (ℝn, d∞) → (ℝ
n, d∞) be a linear isom-

etry. Then f (ei) = ±ej for 1 ≤ i, j ≤ n.

Proof. Let A be the matrix of f with respect to the standard basis {e1, . . . , en} ofℝ
n. Con-

sider the set E∞ of the extreme points of the unit ball B(0, 1) in (ℝn, d∞). Let x ∈ E∞. By
Proposition 3.4.8, Axt ∈ E∞. Therefore, for all 1 ≤ j ≤ n, we have

ejAx
t = ±1. (3.17)

Note that for a fixed i, eiA denotes the ith row of the matrix A. Let

eiA = (a1, . . . , an).

Suppose that

ai1 , ai2 , . . . , aik ≤ 0 and

aik+1 , . . . , ain > 0,
where aij ∈ {a1, . . . , an}. Taking x = (1, 1, . . . , 1) in equation (3.17), we get

eiAx
t = ai1 + ai2 + ⋅ ⋅ ⋅ + aik + aik+1 + ⋅ ⋅ ⋅ + ain
= ±1. (3.18)

Now take x = (δ1, . . . , δn) in equation (3.17), where

δj = {
−1 if j = i1, . . . , ik ,
1 if j = ik+1, . . . , in.

Then we have

eiAx
t = −ai1 − ai2 + ⋅ ⋅ ⋅ − aik + aik+1 + ⋅ ⋅ ⋅ + ain
= ±1. (3.19)

If the right sides of equations (3.18) and (3.19) are of equal sign, then subtracting (3.19)
from (3.18), we get

ai1 + ai2 + ⋅ ⋅ ⋅ + aik = 0.

This implies that

ai1 = ai2 = ⋅ ⋅ ⋅ = aik = 0.

If the right sides of equations (3.18) and (3.19) are of opposite sign, then adding (3.18)
and (3.19), we get
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aik+1 + ⋅ ⋅ ⋅ + ain = 0.
This implies that

aik+1 = ⋅ ⋅ ⋅ = ain = 0.
This is only possible when

a1, a2, . . . , an ≤ 0.

Therefore, in both cases, we see that all nonzero components of (a1, . . . , an) are of the
same sign. Suppose that they are nonnegative and am is the first positive component.
Take x = (u1, u2, . . . , un) in equation (3.17), where

uj = {
1 if 1 ≤ j ≤ m,
−1 ifm < j ≤ n.

Then we have

eiAx
t = am − am+1 − ⋅ ⋅ ⋅ − ain
= ±1. (3.20)

Now taking x = (1, 1, . . . , 1) in equation (3.17), we get

eiAx
t = am + am+1 + ⋅ ⋅ ⋅ + ain
= 1. (3.21)

If the right sides of equations (3.20) and (3.21) are of opposite sign, then adding (3.20)
and (3.21), we get am = 0, a contradiction. Therefore the right side of (3.20) is positive.
Now subtracting (3.20) from (3.21), we get

am+1 + ⋅ ⋅ ⋅ + ain = 0.

This implies that

am+1 = ⋅ ⋅ ⋅ = ain = 0.

Therefore am = 1, and this is the only nonzero entry of the ith row (a1, . . . , an) ofA. Hence
f (ei) = ej for some j.

We can similarly show that f (ei) = −ej when all the components of (a1, . . . , an) are
nonpositive.
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Now we will find the linear isometries of (ℝn, dp) (1 < p <∞). A linear isometry f :
ℝn → ℝn is called nonnegative if all the components of f (x) are nonnegative whenever
all the components of x are nonnegative.

Proposition 3.4.11. Let f : (ℝn, dp) → (ℝ
n, dp) (1 < p < ∞) be a nonnegative linear

isometry. Then f (ei) = ej .

Proof. Let A = (aij) be the matrix of f with respect to the standard basis of ℝn. Then
aij ≥ 0 for all 1 ≤ i, j ≤ n. Let x = (x1, . . . , xn) be such that xj ≥ 0 for all 1 ≤ j ≤ n. Then

󵄩󵄩󵄩󵄩f (x)
󵄩󵄩󵄩󵄩
p
p =

n
∑
i=1
(

n
∑
j=1

aijxj)
p

. (3.22)

Since f is linear and isometry,

‖x‖p = ‖x − 0‖p
= 󵄩󵄩󵄩󵄩f (x) − f (0)

󵄩󵄩󵄩󵄩
= 󵄩󵄩󵄩󵄩f (x)
󵄩󵄩󵄩󵄩p.

This implies that

n
∑
i=1

xpi =
n
∑
i=1
(

n
∑
j=1

aijxj)
p

. (3.23)

For x = ek (1 ≤ k ≤ n) in equation (3.23), we have

1 =
n
∑
i=1

aik . (3.24)

We can consider (3.23) as the value of a differentiable function from ℝn to ℝ. Now con-
sidering the partial derivative of (3.23) with respect to xk , we have

xp−1k =
n
∑
i=1
(

n
∑
j=1

aijxj)
p−1

aik . (3.25)

Putting xj = 1 for j ̸= k and xk = 0 in equation (3.25), we have

n
∑
i=1
(

n
∑

j=1,j ̸=k
aij)

p−1

aik = 0. (3.26)

Since aij ≥ 0, we have
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(
n
∑

j=1,j ̸=k
aij)

p−1

aik = 0. (3.27)

This implies that

either aik = 0 or
n
∑

j=1,j ̸=k
aij = 0,

where 1 ≤ i ≤ n. Since A is invertible (being the matrix of an isomorphism), there is no k
such that aik = 0 for all i. Suppose that there is a kth column such that aik ̸= 0. Further,
suppose that ark ̸= 0 and ask ̸= 0, where r ̸= s. Then from equation (3.27) we have

n
∑

j=1,j ̸=k
arj = 0

and

n
∑

j=1,j ̸=k
asj = 0.

This implies that arj = 0 and asj = 0 for j ̸= k. This shows that the rth row of A is a
multiple of the sth row. This is a contradiction, since A is invertible. This implies that
each column and each row of the matrix A contains exactly one nonzero entry. By equa-
tion (3.24) we see that A is the matrix obtained by permuting the row of the identity
matrix. Hence

f (ei) = ej .

Proposition 3.4.12. Let f : (ℝn, dp) → (ℝ
n, dp) (1 < p < ∞ and p ̸= 2) be a linear

isometry. If all the components of x ∈ ℝn are nonzero, then all the components of f (x) are
nonzero.

Proof. On the contrary, suppose that there is x = (x1, . . . , xn) ∈ ℝ
n with xi ̸= 0 for all i

but f (x) = (y1 . . . , yn) has some component yk = 0. Let z = (z1, . . . , zn) ∈ ℝ
n be such that

f (z) = ek , where ek = (0, . . . , 0, 1, 0, . . . , 0). Note that for any α ∈ ℝ, we have

󵄩󵄩󵄩󵄩f (x + αz)
󵄩󵄩󵄩󵄩
p
p =
󵄩󵄩󵄩󵄩f (x) + αf (z)

󵄩󵄩󵄩󵄩
p
p

= 󵄩󵄩󵄩󵄩f (x)
󵄩󵄩󵄩󵄩
p
p +
󵄩󵄩󵄩󵄩αf (z)
󵄩󵄩󵄩󵄩
p
p.

Since f is isometry,

‖x + αz‖pp = ‖x‖
p
p + ‖αz‖

p
p.
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This implies that

n
∑
i=1
|xi + αzi|

p =
n
∑
i=1
|xi|

p +
n
∑
i=1
|αzi|

p. (3.28)

For given x and z, we can view equation (3.28) as the value of a twice differentiable map
in α from ℝ to ℝ. Differentiating (3.28) twice with respect to α, we get

n
∑
i=1

p(p − 1)|xi + αzi|
p−2z2i = |α|

p−2p(p − 1)
n
∑
i=1
|zi|

p.

This implies that

n
∑
i=1
|xi + αzi|

p−2z2i = |α|
p−2

n
∑
i=1
|zi|

p. (3.29)

First, suppose that p > 2. Taking α = 0 in equation (3.29), we get

n
∑
i=1
|xi|

p−2z2i = 0.

Since |xi| > 0 for all i, zi = 0 for all i. This is a contradiction. Therefore p < 2. Now
equation (3.29) can be written as

|α|2−p
n
∑
i=1
|xi + αzi|

p−2z2i =
n
∑
i=1
|zi|

p. (3.30)

Taking α = 0 in equation (3.30), we get

n
∑
i=1
|zi|

p = 0.

This implies that zi = 0 for all i, a contradiction. Therefore all the components of f (x)
are nonzero.

Proposition 3.4.13. Let f : (ℝn, dp)→ (ℝ
n, dp) (1 < p <∞andp ̸= 2) be a linear isometry.

Let u = (1, 1, . . . , 1). If all the components of f (u) are positive, then f is nonnegative.

Proof. We will prove that if all the components of f (u) are positive, then all the compo-
nents of f (ei) are nonnegative for all i. This will show that f is nonnegative, because for
x = (x1, . . . , xn),

f (x) = x1f (e1) + ⋅ ⋅ ⋅ + xnf (en).

On the contrary, suppose that there is j such that f (ej) = (y1, . . . , yn) has some component
yk < 0. Let f (u) = (a1, . . . , an), and let α =

−ak
yk
. Then α > 0. Now the kth component of
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f (u + αej) = f (u) + αf (ej) is zero, but all the components of u + αej are positive. This is
a contradiction to Proposition 3.4.12. Hence all the components of f (ei) are nonnegative
for all i.

Theorem 3.4.14 (Hemasinha and Weaver). Let f : (ℝn, dp) → (ℝ
n, dp) (1 < p < ∞ and

p ̸= 2) be a linear isometry. Then f (ei) = ±ej for 1 ≤ i, j ≤ n.

Proof. Let f (u) = (a1, . . . , an), where u = (1, 1, . . . , 1). By Proposition 3.4.12, ai ̸= 0 for all i.
Define

ϵi = {
1 if ai > 0,
−1 if ai < 0.

Let us consider the linear maps g : ℝn → ℝn defined by

g(ei) = ϵiei, 1 ≤ i ≤ n.

Let h = g ∘ f . Note that h is a linear isometry and

h(u) = (ϵ1a1, . . . , ϵnan).

Observe that the components of h(u) are nonnegative. By Proposition 3.4.13, h(ei) = ej .
Note that g−1 = g. This implies that f = g ∘ h. Hence f (ei) = ±ej .

3.5 Finite metric spaces

A metric space (X , d) is called finite if the set X contains finitely many points. As an
example of a finite metric space, take a finite subset of some given metric space and
consider it as a metric subspace of X . We can naturally ask that given a finite metric
space X , can we embed X isometrically in some Euclidean space (ℝn, d2)? This is not
always possible as the following example shows.

Example 3.5.1. Let X = {p0, p1, p2, p3}. Define the metric d on X by d(p0, p1) = d(p0, p2) =
d(p1, p2) = 2, d(p0, p3) = d(p1, p3) = 1, and d(p2, p3) =

3
2 .We cannot embedX isometrically

in any Euclidean space. Indeed, if X is embedded isometrically in some Euclidean space,
then the points p0, p1, and p2 will be the vertices of an equilateral triangle of length 2.
Also, p3 is the midpoint of p0 and p1. We can check that the distance of p2 and p3 cannot
be 3

2 .

We can always embed a finite metric space X containing n elements in (ℝn, d∞), as
the following example shows.

Example 3.5.2. Let (X , d) be ametric space, whereX = {p0, p1, . . . , pn}. Consider the ((n+
1) × (n + 1)) matrix A = (aij), where aij = d(pi, pj). Let Ai = (ai0, ai1, . . . , ain). Define the
map ϕ : (X , d)→ (ℝn+1, d∞) by ϕ(pi) = Ai.
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By the triangle inequality aik + akj ≥ aij we can observe that

d∞(Ai,Aj) = ‖Ai − Aj‖∞ ≤ aij for all i, j.

Note that |aij −ajj| = aij . This implies that the above inequality is indeed an equality, that
is, d∞(Ai,Aj) = aij .

Now

d∞(ϕ(pi),ϕ(pj)) = ‖Ai − Aj‖∞
= aij
= d(pi, pj).

Now we move to the question of embedding a finite metric space isometrically into
the Euclidean space. Let X = {p0, p1, . . . , pn}. Consider the matrices M = (mij) and G =
(gij), wheremij = d(pi, pj)

2 and gij =
1
2 (m0i+m0j−mij). ThematrixG is called the Gramian

matrix of X . Note that the Gramian matrix of X is an (n + 1) × (n + 1)matrix whose first
row and first column are zero. This can be represented as follows:

G = (
0 0
0 G1
) ,

whereG1 is an n×nmatrix. Note thatG is positive semidefinite if and only ifG1 is positive
semidefinite.

Theorem 3.5.3 (Schoenberg). A finite matric space (X , d), where X = {p0, p1, . . . , pn}, is
isometrically embedded in (ℝn, d2) if and only if its Gramian matrix G is positive semidef-
inite and has rank at most n.

Proof. Suppose that X is isometrically embedded in (ℝn, d2). Suppose ϕ : X → ℝ
n is an

isometric embedding. Without loss of generality, we can assume that ϕ(p0) = 0 ∈ ℝ
n.

Let

ϕ(pi) = (αi1, . . . , αin), 1 ≤ i ≤ n.

Viewing x = (x1, . . . , xn) ∈ ℝ
n as 1 × n matrix, let Q(x) = xG1x

t be the quadratic form
associated with G1, where G1 is the n × n submatrix mentioned above. Let

P = x1ϕ(p1) + ⋅ ⋅ ⋅ + xnϕ(pn) ∈ ℝ
n.

Then

‖P‖2 =
n
∑
k=1
(x1α1k + ⋅ ⋅ ⋅ + xnαnk)

2

=
n
∑
i=1

x2i
n
∑
k=1

α2ik + 2∑
i<j
xixj

n
∑
k=1

αikαjk .
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Note that

n
∑
k=1

α2ik =
󵄩󵄩󵄩󵄩ϕ(pi)
󵄩󵄩󵄩󵄩
2
2

= 󵄩󵄩󵄩󵄩ϕ(pi) − ϕ(p0)
󵄩󵄩󵄩󵄩
2
2

= d(pi, p0)
2

= m0i

= gii

and

2
n
∑
k=1

αikαjk =
n
∑
k=1

α2ik +
n
∑
k=1

α2jk −
n
∑
k=1
(αik − αjk)

2

= 󵄩󵄩󵄩󵄩ϕ(pi)
󵄩󵄩󵄩󵄩
2
2 +
󵄩󵄩󵄩󵄩ϕ(pj)
󵄩󵄩󵄩󵄩
2
2 −
󵄩󵄩󵄩󵄩ϕ(pi) − ϕ(pj)

󵄩󵄩󵄩󵄩
2
2

= d(pi, p0)
2 + d(pj , p0)

2 − d(pi, pj)
2

= m0i +m0j −mij

= 2gij .

Then

‖P‖22 =
n
∑
i=1

m0ix
2
i +∑

i<j
gijxixj

= xGxt

= Q(x).

This implies that Q(x) ≥ 0. Therefore G1 is positive semidefinite.
Suppose Q(x) = 0. Then P = 0. This implies that

x1ϕ(p1) + ⋅ ⋅ ⋅ + xnϕ(pn) = 0.

Note that ϕ(i) is the ith row of G1. This shows that the rank of G1 is at most n.
Conversely, suppose that G is positive semidefinite and the rank of G is r ≤ n. Let

G1 be the n × n submatrix mentioned above. Then G1 is positive semidefinite. Since G1
is a symmetric matrix, it is diagonalizable. Then there is an orthogonal matrix U such
that G1 = UDU

t , where D is the diagonal matrix diag(d1, . . . , dr , . . . , 0, . . . , 0) with di ̸= 0.
Since G1 is positive semidefinite, di > 0 for 1 ≤ i ≤ r. Let

√D = diag(√d1, . . . ,√dr , . . . , 0, . . . , 0)

and P = √DU t . Then
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PtP = U√D√DU t = G1.

Define ϕ : X → ℝn by

ϕ(pi) = ith column of P(1 ≤ i ≤ n)

and ϕ(p0) = 0. Then

P = [ϕ(p1), . . . ,ϕ(pn)].

The ijth entry of PtP is ⟨ϕ(pi),ϕ(pj)⟩. Therefore gij = ⟨ϕ(pi),ϕ(pj)⟩. Now

󵄩󵄩󵄩󵄩ϕ(pi)
󵄩󵄩󵄩󵄩
2
2 = ⟨ϕ(pi),ϕ(pi)⟩

= gii = m0i

= d(ai, a0)
2.

This shows that

󵄩󵄩󵄩󵄩ϕ(pi) − ϕ(p0)
󵄩󵄩󵄩󵄩2 = d(pi, p0).

Again,

󵄩󵄩󵄩󵄩ϕ(pi) − ϕ(pj)
󵄩󵄩󵄩󵄩
2
2 =
󵄩󵄩󵄩󵄩ϕ(pi)
󵄩󵄩󵄩󵄩2 +
󵄩󵄩󵄩󵄩ϕ(pj)
󵄩󵄩󵄩󵄩2 − 2⟨ϕ(pi),ϕ(pj)⟩

= m0i +m0j − (m0i +m0j −mij)

= mij

= d(pi, pj)
2.

This shows that ‖ϕ(pi) − ϕ(pj)‖2 = d(pi, pj). Hence ϕ is an isometric embedding of X
into ℝn.

Given the metric space X = {p0, p1, . . . , pn}, the determinant

D(p0, p1, . . . , pn) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

0 1 1 ⋅ ⋅ ⋅ 1
1 0 m01 ⋅ ⋅ ⋅ m0n
1 m10 0 ⋅ ⋅ ⋅ m1n
...

...
...

. . .
...

1 mn0 mn1 ⋅ ⋅ ⋅ 0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

is called the Cayley–Menger determinant. We can prove that

detG = (−1)
n+1

2n
D(p0, p1, . . . , pn), (3.31)
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where G is the Gramian matrix of X = {p0, p1, . . . , pn}. The following is a result from
linear algebra, whose proof can be found in [4].

Theorem 3.5.4. Let A be an n × n real symmetric matrix of rank r. Then A is posi-
tive semidefinite if and only if the first r leading principal minors of A are positive and
detA ≥ 0.

By Theorems 3.5.3 and 3.5.4 and equation (3.31) we obtain the following:

Theorem 3.5.5. A finite metric space X is isometrically embedded in the Euclideanℝn but
not in ℝn−1 if and only if there are p0, p1, . . . , pn ∈ X such that
(i) (−1)j+1D(p0, p1, . . . , pj) > 0 for 1 ≤ j ≤ n and
(ii) D(p0, p1, . . . , pn, x) = D(p0, p1, . . . , pn, y) = D(p0, p1, . . . , pn, x, y) = 0 for all x, y ∈ X.

Exercises

3.1. First of all, complete whatever is left for you as exercises.
3.2. Show that the function f : ℝ→ ℝ be defined by

f (x) = {
0, x ≤ 0,
x, x ≥ 0,

is continuous.
3.3. Show that the maps f : ℝ2 → ℝ and g : ℝ2 → ℝ defined by f (x, y) = x + y and

g(x, y) = xy are continuous.
3.4. Show that the map f : ℝn × ℝn → ℝ defined by f (x, y) = ⟨x, y⟩ is continuous.
3.5. If f and g are continuousmaps from ametric space X toℝ, then show that themap
(f , g) : X → ℝ defined by (f , g)(x) = (f (x), g(x)) is continuous.

3.6. If f and g are continuous maps from a metric space X to a metric space Y , then
show that the set

{x ∈ X | f (x) = g(x)}

is a closed set in X .
3.7. Let f and g be continuous maps from a metric space X to a metric space Y . If they

are equal on some dense set in X , then show that f = g.
3.8. Show that 𝕊n \ {en+1} is homeomorphic to ℝ

n, where en+1 = (0, . . . , 0, 1).
3.9. Show that the closed ball D(x, r) in ℝn is homeomorphic to [0, 1]n.
3.10. Check whether the map f : (−π2 ,

π
2 ) → ℝ defined by f (x) = tan x is uniformly

continuous or not.
3.11. Let V be an infinite-dimensional normed space. Show that there is a discontinuous

functional on V .
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3.12. Show that the map f : X → Y is continuous if and only if

dX (x,A) = 0⇒ dY (f (x), f (A)) = 0

for all A ⊆ X and x ∈ X .
3.13. Let X be a metric space, and let

{fα : X → [a, b] | α ∈ 𝒜}

be a family of continuous maps. Check whether the maps

μ(x) = lub{fα(x) | α ∈ 𝒜}

and

κ(x) = glb{fα(x) | α ∈ 𝒜}

are continuous or not.
3.14. Give an example of a finite metric space X that cannot be isometrically embedded

inℤn. Can you think of some conditions such thatX can be isometrically embedded
in ℤn?

3.15. Let A and B be two bounded polygons in the plane. Show that

δ(A,B) = a(A) + a(B) − 2a(A ∩ B)

is a metric on set of all bounded polygons in a plane, where a(A) denotes the area
of A. Also, show that it is not topologically equivalent to the Hausdorff distance.

3.16. Show that the metric δ defined in the Exercise 3.15. is topologically equivalent to
the Hausdorff distance if we restrict δ to the set of convex bounded polygons in
the plane.



4 Product and quotient metric spaces

In this chapter, we study the metrics defined on the product and quotient of metric
spaces.

4.1 Product of metric spaces

Let {(Xα, dα) | α ∈ Λ} be a family of metric spaces. We can ask whether the product
∏α∈Λ Xα is ametric space. It is obvious thatwe can define the discretemetric on∏α∈Λ Xα.
We can further ask whether there is a metric on∏α∈Λ Xα using the metrics on Xα, α ∈ Λ.
Wewill answer this question by considering different possibilities on the indexing set Λ.
We are indeed interested in theminimal possibility of open sets in∏α∈Λ Xα such that the
projection maps are continuous. We will discuss this after we define the topology.

Example 4.1.1. Let (X1, d1), . . . , (Xn, dn) be n metric spaces. Let x = (x1, . . . , xn) and y =
(y1, . . . , yn) be in∏

n
i=1 Xi. Define d : ∏

n
i=1 Xi ×∏

n
i=1 Xi → ℝ by

d(x, y) = (
n
∑
i=1

di(xi, yi)
2)

1
2

.

We can check that d is a metric on∏ni=1 Xi.

Example 4.1.2. Let ‖ ⋅ ‖ be a norm onℝn. Let (X1, d1), . . . , (Xn, dn) be nmetric spaces. Let
x = (x1, . . . , xn), y = (y1, . . . , yn), and z = (z1, . . . , zn) be in ∏

n
i=1 Xi. Define d : ∏

n
i=1 Xi ×

∏ni=1 Xi → ℝ by

d(x, y) = 󵄩󵄩󵄩󵄩(d1(x1, y1), . . . , dn(xn, yn))
󵄩󵄩󵄩󵄩.

We can check that d is nonnegative and symmetric and that d(x, y) = 0 if and only if
x = y. For the triangle inequality, let x, y, z ∈ ∏ni=1 Xi. Then

d(x, y) + d(y, z) = 󵄩󵄩󵄩󵄩(d1(x1, y1), . . . , dn(xn, yn))
󵄩󵄩󵄩󵄩

+ 󵄩󵄩󵄩󵄩(d1(y1, z1), . . . , dn(yn, zn))
󵄩󵄩󵄩󵄩

≥ 󵄩󵄩󵄩󵄩(d1(x1, y1) + d1(y1, z1), . . . , dn(xn, yn) + dn(yn, zn))
󵄩󵄩󵄩󵄩

≥ 󵄩󵄩󵄩󵄩(d1(x1, z1), . . . , dn(xn, zn))
󵄩󵄩󵄩󵄩

= d(x, z).

Hence d is a metric on∏ni=1 Xi.

Later, we will prove that all the norms of a finite-dimensional vector space are Lip-
schitz equivalent. Therefore it is sufficient to deal with one metric on∏ni=1 Xi if it is de-

https://doi.org/10.1515/9783111636085-004



128 � 4 Product and quotient metric spaces

fined with the help of a norm on ℝn as given in Example 4.1.2 (as far as open sets or
closed sets are concerned).

Let {(Xi, di) | 1 ≤ i ≤ n} be a set of nmetric spaces, where n ∈ ℕ. Consider the norm
‖ ⋅ ‖∞ on ℝn as defined in Example 2.2.4. Define a metric d∞ on∏ni=1 Xi using the norm
‖ ⋅ ‖∞ as defined in Example 4.1.2. Then we can check that for x = (x1, . . . , xn) ∈ ∏

n
i=1 Xi

and r > 0, we have

Bd∞ (x, r) = Bd1 (x1, r) × ⋅ ⋅ ⋅ × Bdn (xn, r).
Proposition 4.1.3. Let {(Xi, di) | 1 ≤ i ≤ n} be a set of n metric spaces, where n ∈ ℕ.
Let V be an open set in (∏ni=1 Xi, d∞), and let x ∈ V. Then there is an open set∏

n
i=1 Ui in

(∏ni=1 Xi, d∞) such that

x ∈
n
∏
i=1

Ui ⊆ V ,

where Ui is open in (Xi, di).

Proof. We first show that if Ui is open in (Xi, di), then∏
n
i=1 Ui is open in (∏

n
i=1 Xi, d∞).

Let z = (z1, . . . , zn) ∈ ∏
n
i=1 Ui. Since each Ui is open in Xi, there is a positive real

number ri such that

Bdi (zi, ri) ⊆ Ui.

Let r = min{r1, . . . , rn}. Then

Bd∞ (z, r) = Bd1 (z1, r) × ⋅ ⋅ ⋅ × Bdn (zn, r) ⊆ n
∏
i=1

Ui.

Now letV be an open set in∏ni=1 Xi, and let x = (x1, . . . , xn) ∈ V . SinceV is open in∏ni=1 Xi,
there is r > 0 such that

Bd∞ (x, r) ⊆ V .
Note that Bd∞ (x, r) = Bd1 (x1, r) × ⋅ ⋅ ⋅ × Bdn (xn, r) and Ui = Bdi (xi, r) is open in Xi. This
completes the proof.

Corollary 4.1.4. Let {(Xi, di) | 1 ≤ i ≤ n} be a set of n metric spaces, where n ∈ ℕ. Then
each open set in (∏ni=1 Xi, d∞) is a union of open sets of the form∏

n
i=1 Ui, where Ui is open

in (Xi, di).

Corollary 4.1.5. Let {(Xi, di) | 1 ≤ i ≤ n} be a set of n metric spaces, where n ∈ ℕ. Then
the projection maps πi : ∏

n
i=1 Xi → Xi defined by πi(x1, . . . , xn) = xi are continuous.
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Proof. Let Ui be open sets in Xi. Then

π−1i (Ui) =
n
∏
j=1

Vj ,

where

Vj = {
Ui if j = i,
Xj otherwise.

Let us consider a countable family {(Xi, di) | i ∈ ℕ} of metric spaces. The idea of
giving a metric on∏∞i=1 Xi with the help of a norm as defined in Example 4.1.2 may not
work in this case. Itmay yield a divergent series. For example, letXi = ℝ, and let di be the
discretemetric onXi for all i ∈ ℕ. Consider the ℓ1 norm ‖⋅‖1. Define d : ∏

∞
i=1 Xi×∏

∞
i=1 Xi →

ℝ by

d((xn), (yn)) =
∞
∑
i=1

di(xn, yn).

Let (an) and (bn) be two elements in∏
∞
i=1 Xi such that an ̸= bn for all n ∈ ℕ. Then

d((an), (bn)) =
∞
∑
i=1

1,

which is not a convergent series. For a collection {(Xi, di) | i ∈ ℕ} of metric spaces, we
define d : ∏∞i=1 Xi ×∏

∞
i=1 Xi → ℝ by

d(x, y) =
∞
∑
i=1

1
2i

di(xi, yi)
1 + di(xi, yi)

for x = (xn) and y = (yn). We can check that d is a metric on the product∏∞i=1 Xi. We can
also define the metric d on∏∞i=1 Xi as follows:

d(x, y) =
∞
∑
i=1

ai
di(xi, yi)

1 + di(xi, yi)
,

where∑ ai is a convergent series of positive terms. If each di were a bounded metric of
diameter at most 1, then we could have defined the metric d on∏∞i=1 Xi as follows:

d(x, y) =
∞
∑
i=1

di(xi, yi)
2i
. (4.1)

Proposition 4.1.6. Let {(Xi, di) | i ∈ ℕ} be a collection of bounded metric spaces of diam-
eter at most 1. Let d be the metric on the product∏∞i=1 Xi as defined in equation (4.1). Let V
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be an open set in (∏∞i=1 Xi, d), and let x ∈ V. Then there are n ∈ ℕ and an open set∏
∞
i=1 Ui

in (∏∞i=1 Xi, d∞), where Ui is open in Xi for 1 ≤ i ≤ n and Ui = Xi for all i > n such that

x ∈
∞
∏
i=1

Ui ⊆ V .

Proof. Let n ∈ ℕ. We first show that∏∞i=1 Ui, where Ui is open in Xi and Ui = Xi for all
i > n, is open in∏∞i=1 Xi. Let z = (zi) ∈ ∏

∞
i=1 Ui. For each 1 ≤ i ≤ n, there is ri > 0 such that

Bdi (zi, ri) ⊆ Ui.

Let

r = min{ r1
2
,
r2
22
, . . . ,

rn
2n
}.

Let y = (yi) ∈ Bd(z, r). Then for each 1 ≤ i ≤ n, we have

di(zi, yi)
2i
≤ d(z, y) < r ≤ ri

2i
.

Therefore di(zi, yi) < ri. This implies that

y = (yi) ∈ Bd1 (z1, r1) × ⋅ ⋅ ⋅ × Bdn (zn, rn) × Xn+1 × Xn+2 × ⋅ ⋅ ⋅

⊆
∞
∏
i=1

Ui.

Since y ∈ Bd(z, r) is arbitrary, Bd(z, r) ⊆ ∏
∞
i=1 Ui. This shows that z is an interior point of

∏∞i=1 Ui. Since z ∈ ∏
∞
i=1 Ui is arbitrary,∏

∞
i=1 Ui is open.

Now let V be an open set in∏∞i=1 Xi, and let x = (xi) ∈ V . Then there is r > 0 such
that

Bd(x, r) ⊆ V .

Choose n ∈ ℕ such that

∞
∑
i=n+1

1
2i
<
r
2
.

Consider the open set

B = Bd1(x1,
r
2n
) × ⋅ ⋅ ⋅ × Bdn(xn,

r
2n
) × Xn+1 × Xn+2 × ⋅ ⋅ ⋅ .

Note that x ∈ B. Let y = (yi) ∈ B. Then di(xi, yi) <
r
2n for all 1 ≤ i ≤ n. Then
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d(x, y) =
∞
∑
i=1

di(xi, yi)
2i

=
n
∑
i=1

di(xi, yi)
2i
+
∞
∑
i=n+1

di(xi, yi)
2i

< n r
2n
+
r
2

= r.

Therefore y ∈ Bd(x, r). This shows that B ⊆ Bd(x, r). Thus we have

x ∈ B ⊆ V .

We can show that an open set in (∏∞i=1 Xi, d) is the union of open sets∏
∞
i=1 Ui, where

Ui is open in Xi, and Ui = Xi for all i > n. We can also show that each projection map is
continuous. Note that

n
∏
i=1

π−1i (Ui) =
∞
∏
i=1

Ui,

where Ui is open in Xi, and Ui = Xi for all i > n.
Let Fi be closed in Xi. Then

∞
∏
i=1

Fi =
∞
⋂
i=1

π−1i (Fi).

This shows that∏∞i=1 Fi is closed in∏
∞
i=1 Xi.

Proposition 4.1.7. Let X be a nonempty set, and let Z be the set of all sequences in X. Let
x = (xn), y = (yn) ∈ Z. Define ρ : Z × Z → ℝ by

ρ(x, y) = {
0 if x = y,

1
min{i∈ℕ|xi ̸=yi}

otherwise.

Then ρ is a metric on Z.

Proof. We will only show the triangle inequality. Let x = (xn), y = (yn), and z = (zn) be
in Z. If any two of x, y, and z are equal, then the triangle inequality holds. Suppose that
x ̸= y, y ̸= z, and z ̸= x. Let

l = min{i ∈ ℕ | xi ̸= yi}, k = min{i ∈ ℕ | yi ̸= zi},

m = min{i ∈ ℕ | zi ̸= xi}.

Note that for i ∈ ℕ, if xi = yi and yi = zi, then xi = zi. Therefore



132 � 4 Product and quotient metric spaces

m ≥ min{l, k}.

This implies that

1
m
≤
1
l
+
1
k
.

This proves the triangle inequality.

Proposition 4.1.8. Let (X , d′) be the discrete metric space, and let Z be a set of se-
quences in X. Then the metric space (Z, ρ) is topologically equivalent to the metric space
(∏∞i=1 X , d), where ρ and d are the metrics defined in equation (4.1) and 4.1.7, respectively.

Proof. Note that if U is an open set in (Z, ρ) containing x = (xi) ∈ Z, then B(x,
1
n ) ⊆ U for

some n ∈ ℕ. Let y = (yi) ∈ Z. Then

y ∈ Bρ(x,
1
n
)⇔ d(x, y) < 1

n

⇔
1

min{i ∈ ℕ | xi ̸= yi}
<
1
n

⇔ n < min{i ∈ ℕ | xi ̸= yi}
⇔ xi = yi for all 1 ≤ i ≤ n
⇔ y ∈ {x1} × ⋅ ⋅ ⋅ × {xn} × X × X × ⋅ ⋅ ⋅ .

This shows that

Bρ(x,
1
n
) = {x1} × ⋅ ⋅ ⋅ × {xn} × X × X × ⋅ ⋅ ⋅ .

By Proposition 4.1.6 and the discussion above we can observe that U is open in (Z, ρ) if
and only if U is open in (∏∞i=1 X , d).

Let us consider an arbitrary family {(Xα, dα) | α ∈ Λ} of metric spaces. Let dα be the
standard bounded metric on Xα corresponding to dα. Let x = (xα) and y = (yα) be two
elements in∏α∈Λ Xα. Define d : ∏α∈Λ Xα ×∏α∈Λ Xα → ℝ by

d(x, y) = sup{dα(xα, yα) | α ∈ Λ}.

We can check that d is a metric on∏α∈Λ Xα. This metric is called the uniform metric on
the product∏α∈Λ Xα.

4.2 Metric-preserving maps

Let us revisit Example 4.1.1. Consider it for two metric spaces (X , dX ) and (Y , dY ). The
metric d on X × Y is defined by



4.2 Metric-preserving maps � 133

d((x1, y1), (x2, y2)) = (dX (x1, x2)
2 + dY (y1, y2)

2)
1
2 .

Let us denote [0,∞) by ℝ+. Define the map

ρ : (X × Y ) × (X × Y )→ ℝ+ × ℝ+

by

ρ((x1, y1), (x2, y2)) = (dX (x1, x2), dY (y1, y2)).

Now we define f : ℝ+ × ℝ+ → ℝ+ by

f (x, y) = (x2 + y2)
1
2 .

Clearly, d = f ∘ρ.We can do the same for an arbitrary product ofmetric spaces as follows.
Let {(Xα, dα) | α ∈ Λ} be an arbitrary family of metric spaces. Let δ = (dα)α∈Λ be the

collection of metrics dα. Let Z = ∏α∈Λ Xα, and let x = (xα) and y = (yα) be in Z. Define

ρδ : Z × Z → ℝ
Λ
+

by

ρδ(x, y) = (dα(xα, yα)). (4.2)

Let us study the properties of a function f : A → ℝ+ such that f ∘ ρδ is a metric on Z,
where Im ρδ ⊆ A ⊆ ℝ

Λ
+. Let

σ : Z × Z × Z → ℝΛ+ × ℝ
Λ
+ × ℝ

Λ
+

be the map defined by

σ(x, y, z) = (ρδ(x, y), ρδ(x, z), ρδ(y, z)).

Let us generalize Definitions 2.3.4 and 2.3.6 as follows.

Definition 4.2.1. Let A ⊆ ∏α∈Λℝ
Λ
+. A map f : A→ ℝ+ is called

(i) subadditive if for all x, y ∈ ∏α∈Λℝ
Λ
+,

f (x + y) ≤ f (x) + f (y),

(ii) amenable on A if f −1{0} = {(0)}.

Theorem 4.2.2 (Borsik and Dobos). Let {(Xα, dα) | α ∈ Λ} be an arbitrary family of metric
spaces. Let δ = (dα)α∈Λ be the collection of metrics dα. Let ρδ be themap as defined in (4.2),
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let A be a subset of∏α∈Λℝ
Λ
+ containing the image Im ρ, and let f : A→ ℝ+. Then f ∘ ρδ is

a metric on Z = ∏α∈Λ Xα if and only if
(i) f is amenable on Im ρδ ,
(ii) for all x, y, z ∈ Im ρδ such that (x, y, z) ∈ Im σ, we have f (x) ≤ f (y) + f (z).

Proof. Suppose that f ∘ ρδ is a metric on Z. Let x ∈ Im ρδ . Then there exist a, b ∈ Z such
that ρδ(a, b) = x. Therefore

0 = f (x) = f (ρδ(a, b))⇔ a = b⇔ x = (0).

This proves (i). Now let x, y, z ∈ Im ρδ be such that (x, y, z) ∈ Im σ . Then there exist
a, b, c ∈ Z such that

ρδ(a, b) = x, ρδ(a, c) = y and ρδ(b, c) = z.

Therefore

f (x) = f (ρδ(a, b))

≤ f ∘ ρδ(a, c) + f ∘ ρδ(b, c)

= f (y) + f (z).

This proves (ii).
Conversely, suppose that the conditions (i) and (ii) hold. Clearly, f ∘ ρδ(x, y) ≥ 0 and

f ∘ ρδ(x, y) = f ∘ ρδ(y, x). Let x = (xα), y = (yα) ∈ Z. Then

0 = f ∘ ρδ(x, y)

= f (ρδ(x, y))

⇔ ρδ(x, y) = (0)

⇔ xα = yα for all α ∈ Λ

⇔ x = y.

Let x, y, z ∈ Z. Then σ(x, y, z) ∈ Im σ . Therefore

f ∘ ρδ(x, y) = f (ρδ(x, y))

≤ f (ρδ(x, z)) + f (ρδ(z, y))

= f ∘ ρδ(x, z) + f ∘ ρδ(z, y).

This shows that f ∘ ρδ is a metric on Z.

Definition 4.2.3. A map f : ℝΛ+ → ℝ+ is called a metric-preserving map if f ∘ ρδ is a
metric for every collection of metrics δ = (dα)α∈Λ.
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Proposition 4.2.4. Let f : ℝΛ+ → ℝ+ be a metric-preserving map. Then f is amenable.

Proof. Let a ∈ ℝ+. Let d be the usual metric on ℝ. Then there exist x, y ∈ ℝ such that
d(x, y) = a. Define a collection δ = (dα)α∈Λ of metrics such that dα = d for every α ∈ Λ.
Note that Im ρδ = ℝ

Λ
+. Then by Theorem 4.2.2 f is amenable.

Let x, y ∈ ℝΛ. We say that x ≤ y if y − x ∈ ℝΛ+. Let x, y, z ∈ ℝ
Λ
+ be such that x ≤ y + z,

y ≤ z + x, and z ≤ x + y. By the abuse of language, we will also call such a triple (x, y, z)
a triangle triple.

Proposition 4.2.5. Let f : ℝΛ+ → ℝ+ be ametric-preservingmap. If (x, y, z) ∈ ℝ
Λ
+×ℝ

Λ
+×ℝ

Λ
+

is a triple, then f (x) ≤ f (y) + f (z).

Proof. Let a, b, c ∈ ℝ+, and let d be the usual metric on ℝ
2. Then there exist x, y, z ∈ ℝ2

such that d(x, y) = a, d(y, z) = b, and d(z, x) = c. Define a collection δ = (dα)α∈Λ of
metrics such that dα = d for every α ∈ Λ. Note that

{(x, y, z) ∈ ℝΛ+ × ℝ
Λ
+ × ℝ

Λ
+ | (x, y, z) is a triangle triple} ⊆ Im ρδ .

Then by Theorem 4.2.2, f (x) ≤ f (y) + f (z).

By Theorem 4.2.2 and Propositions 4.2.4 and 4.2.5 we have the following:

Theorem 4.2.6 (Borsik and Dobos). Let {(Xα, dα) | α ∈ Λ} be an arbitrary family of metric
spaces. Let δ = (dα)α∈Λ be the collection of metrics dα. Let ρδ be themap as defined in (4.2).
Then f : ℝΛ+ → ℝ+ is a metric-preserving map if and only if
(i) f is amenable,
(ii) for all triangle triples (x, y, z) ∈ ℝΛ+ × ℝ

Λ
+ × ℝ

Λ
+, we have f (x) ≤ f (y) + f (z).

4.3 Quotient metric space

Definition 4.3.1. Let X be a nonempty set. Then amap d : X ×X → ℝ is called a pseudo-
metric on X if for all x, y, z ∈ X , the following conditions hold:
(i) d(x, y) ≥ 0,
(ii) if x = y, then d(x, y) = 0,
(iii) d(x, y) = d(y, x),
(iv) d(x, y) ≤ d(x, z) + d(z, y).

The pair (X , d), where X is a nonempty set and d is a pseudo-metric on X , is called a
pseudo-metric space. If (X , d) is a pseudo-metric space, then we can prove that |d(x, z)−
d(y, z)| ≤ d(x, y) for all x, y, z ∈ X .
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Example 4.3.2. Every metric space is a pseudo-metric space. Let X be a set containing
at least two elements. Define d : X × X → ℝ by d(x, y) = 0 for all x, y ∈ X . Then d is a
pseudo-metric but not a metric on X .

Example 4.3.3. LetR[a, b] denote the set of all Riemann-integrable functions f : [a, b]→
ℝ. Define d : R[a, b] × R[a, b]→ ℝ by

d(f , g) =
b

∫
a

󵄨󵄨󵄨󵄨f (t) − g(t)
󵄨󵄨󵄨󵄨dt.

Then d is a pseudo-metric on R[a, b]. The value d(f , g) may be 0 without f = g, for ex-
ample, if f and g are two Riemann-integrable functions that differ only at finitely many
points of [a, b], then d(f , g) = 0.

Example 4.3.4. Let f : X → ℝ be a map. Define the map d : X × X → ℝ by d(x, y) =
|f (x)− f (y)|. Then d is a pseudo-metric on X . We can easily prove that d is a metric if and
only if f is injective.

Example 4.3.5. The Hausdorff distance dH (A,B) defined on the set of all bounded
nonempty sets of a metric space is a pseudo-metric.

Proposition 4.3.6. Let V be a normed linear space, and let W be a subspace of V . Then
the map dW : V/W × V/W → ℝ defined by

dW (x +W , y +W ) = inf{‖x − y + w‖ | w ∈ W}

is a pseudo-metric on V/W.

Proof. We can clearly observe that dW (x +W , y +W ) ≥ 0, dW (x +W , x +W ) = 0, and
dW (x +W , y +W ) = dW (y +W , x +W ). Now we prove the triangle inequality. Observe
that

dW (x +W , y +W ) = inf{‖x − y + w‖ | w ∈ W}

= inf{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(x − z) − (y − z) + w

2
+
w
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨󵄨 w ∈ W}

≤ inf{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(x − z) + w

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(y − z) + w

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨󵄨 w ∈ W}

≤ inf{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(x − z) + w

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨󵄨 w ∈ W}

+ inf{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(y − z) + w

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨󵄨 w ∈ W}

≤ dW (x +W , z +W ) + dW (z +W , y +W ).

Remark 4.3.7. We can observe that dW (x +W , y +W ) = 0 if and only if x − y ∈ Cl W .
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Let T : V → W be a surjective continuous linear transformation, and let K = Ker T .
By Proposition 4.3.6 and Remark 4.3.7 we can note that V/K is a normed space. We can
also check that the map T : V/K → W defined by

T(x + K) = T(x)

is a bijective linear transformation.

Theorem 4.3.8. Let V and W be two normed spaces, and let T : V → W be a surjective
continuous linear transformation. Let K = Ker T. Then the map T : V/K → W defined
above is a bijective continuous linear transformation, and ‖T‖ = ‖T‖.

Proof. Let y ∈ x + K , where x ∈ V . Then

󵄩󵄩󵄩󵄩T(x + K)
󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩T(y)
󵄩󵄩󵄩󵄩 ≤ ‖T‖‖y‖.

This implies that

󵄩󵄩󵄩󵄩T(x + K)
󵄩󵄩󵄩󵄩 ≤ ‖T‖ inf{‖y‖ | y ∈ x + K}

= ‖T‖‖x + K‖.

This shows that T is continuous. Now note that

‖T‖ = sup{󵄩󵄩󵄩󵄩T(x + K)
󵄩󵄩󵄩󵄩 | ‖x + K‖ ≤ 1} ≤ ‖T‖.

Let x ∈ V be such that ‖x‖ ≤ 1. Then

‖x + K‖ = inf{‖x + z‖ | z ∈ K} ≤ ‖x‖ ≤ 1.

Therefore

󵄩󵄩󵄩󵄩T(x)
󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩T(x + K)

󵄩󵄩󵄩󵄩
≤ sup{󵄩󵄩󵄩󵄩T(w + K)

󵄩󵄩󵄩󵄩 | ‖w + K‖ ≤ 1}

= ‖T‖.

This shows that

‖T‖ = sup{󵄩󵄩󵄩󵄩T(x)
󵄩󵄩󵄩󵄩 | ‖x‖ ≤ 1} ≤ ‖T‖.

Thus ‖T‖ = ‖T‖.

Let (X , d) be a pseudo-metric space. Define a relation ∼ on X by x ∼ y if d(x, y) = 0.
Then we can check that ∼ is an equivalence relation on X .
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Proposition 4.3.9. Let (X , d) be a pseudo-metric space, and let ∼ be the equivalence rela-
tion defined above. Let X = X/ ∼. Then the map d̃ : X × X → ℝ defined by d̃(x, y) = d(x, y)
is a metric on X.

Proof. We first show that d̃ is well defined. Let x1, x2 ∈ x and y1, y2 ∈ y. Then

d(x1, y1) ≤ d(x1, x2) + d(x2, y2) + d(y2, y1) = d(x2, y2),

and

d(x2, y2) ≤ d(x2, x1) + d(x1, y1) + d(y1, y2) = d(x1, y1).

This shows that d(x1, y1) = d(x2, y2). Suppose that d̃(x, y) = 0. Therefore d(x, y) = 0. This
implies that x ∼ y, which shows that x = y. We can easily show that the other conditions
of a metric are satisfied.

We will write X/d instead of (X/ ∼, d̃) and use the same symbol d in place of d̃ to
denote the metric on X/d.

Let (X , d) be ametric space, and let R be an equivalence relation on the set X . Define
the map dR : X × X → ℝ by

dR(x, y) = inf{d(p0, q0) + d(p1, q1) + ⋅ ⋅ ⋅ + d(pn, qn)},

where the infimum is taken over all the finite sequences (p0, p1, . . . , pn) and (q0, q1, . . . ,
qn)with p0 = x, qn = y, and qi = pi+1 for all i = 1, 2, . . . , n−1.We can check that dR satisfies
the first three conditions of a pseudo-metric space. We now prove that it also satisfies
the triangle inequality. Let x, y, z ∈ X/R. Let p0, p1, . . . , pn, q0, q1, . . . , qn, p

′
0, p
′
1, . . . , p

′
m, and

q′0, q
′
1, . . . , q

′
m be such that p0 = x, qn = y = p′0, q

′
m = z, qi = pi+1, and q′j = p

′
j+1 for all i

and j. Then

n
∑
i=0

d(pi, qi) +
m
∑
j=0

d(p′j , q
′
j ) =

n−1
∑
i=0

d(pi, qi) + d(pn, qn) + d(p
′
0, q
′
0) +

m
∑
j=1

d(p′j , q
′
j )

≥
n−1
∑
i=0

d(pi, qi) + d(pn, q
′
0) +

m
∑
j=1

d(p′j , q
′
j ).

Considering the infimum over all such pi and qj , we get

dR(x, y) + dR(y, z) ≥ dR(x, z).

Thus dR is a pseudo-metric on X/R. By Proposition 4.3.9 we can define a metric on the
quotient of X/R, which we call the quotient metric. We denote it by the same notation
(X/R, dR). The space (X/R, dR) is called the quotient metric space.
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Definition 4.3.10. Let (X , dX ) and (Y , dY ) be pseudo-metric spaces. Then a map f : X →
Y is called nonexpansive if for all x, y ∈ X ,

dY (f (x), f (y)) ≤ dX (x, y).

We can check that the pseudo-metric dR defined above satisfies the following uni-
versal property:

If f : X → Y is a nonexpansive map such that f (x) = f (y) whenever x = y, then there is a
nonexpansive map f : X/R→ Y such that the following diagram commutes:

X X/R

Y

f

ν

f

where ν is the quotient map.

Let V be a normed space, and letW be a subspace of V . Then the relation R on V
defined by (x, y) ∈ R if x − y ∈ W is an equivalence relation V . Observe that for each
x ∈ V , the equivalence class x = x +W . We now observe that dR = dW .

Let p0, p1, . . . , pn be such that p0 = x, qn = y, and qi = pi+1 for all i. Then

n
∑
i=0

d(pi, qi) =
n
∑
i=0

󵄩󵄩󵄩󵄩(pi − qi)
󵄩󵄩󵄩󵄩

= ‖p0 − q0‖ + ‖p1 − q1‖ + ⋅ ⋅ ⋅ + ‖pn − qn‖
= ‖p0 − q0‖ + ‖q0 + w1 − q1‖ + ⋅ ⋅ ⋅ + ‖qn−1 + wn − qn‖
≥ 󵄩󵄩󵄩󵄩p0 − qn + (w1 + ⋅ ⋅ ⋅ + wn)

󵄩󵄩󵄩󵄩.

This shows that

dR(x, y) ≥ dW (x, y).

Note that

{‖x − y + w‖ | w ∈ W} = {‖p − q‖ | p = q}

⊆ {
n
∑
i=0

󵄩󵄩󵄩󵄩(pi − qi)
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨󵄨󵄨 p0 = x, qn = y, qi = pi+1,∀i}.

This shows that

dR(x, y) ≤ dW (x, y).

Hence dR(x, y) = dW (x, y).
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Exercises

4.1. First of all, complete whatever is left for you as exercises.
4.2. Let {(Xi, di) | i ∈ ℕ} be a bounded countable family of metric spaces. Consider the

metric d on∏∞i=1 Xi as defined in equation (4.1). Let Y be ametric space. Then show
that a map f : Y → ∏∞i=1 Xi is continuous if and only if πj ∘ f : Y → Xj is continuous
for all j, where πj is the jth projection.

4.3. Let {(Xα, dα) | α ∈ Λ} be an arbitrary family of metric spaces. Consider the uniform
metric on∏α∈Λ Xα. Check whether the statement of Exercise 4.2. holds in this case
or not.

4.4. Let (∏∞i=1 Xi, di) be the metric space as in Exercise 4.2. Show that each projection is
an open map.

4.5. Let (∏α∈Λ Xα, d)be themetric space as in Exercise 4.3. Checkwhether the statement
of Exercise 4.4. holds in this case or not.

4.6. Consider a group (G, ∘) that is also a metric space. Suppose that x 󳨃→ x−1 is a con-
tinuous map on G. Further, consider a metric on G × G such that the binary op-
eration ∘ is continuous. Let U be an open set containing the identity e of G. Show
that U contains an open set V containing e such that V 2 ⊆ U and V−1 = V , where
V 2 = {xy | x, y ∈ V } and V−1 = {x−1 | x ∈ V }.

4.7. Consider a group (G, ∘) that is also a metric space. Suppose that all the hypotheses
of Exercise 4.6. hold. Show that the closure of each subgroup is also a subgroup.
Also, show that if H is an open subgroup, then it is also a closed subgroup of G.

4.8. Show that d′((x1, y1), (x2, y2)) = |(x1 − x2) + (y1 − y2)| is a pseudo-metric onℝ
2. Also,

show that ℝ2/d is isometric to the real line.
4.9. Consider [0, 1] with the usual metric d. Let R be the equivalence relation on [0, 1]

defined by (0, 1) ∈ R with the other elements related to themselves only. Explore
the quotient metric space ([0, 1]/R, dR).

4.10. Let f : ℝΛ+ → ℝ+ be ametric-preservingmap. Show that f is continuous if and only
if f is continuous at 0 ∈ ℝΛ+.



5 Sequences in metric spaces

In this chapter, we study the convergence of sequences in a metric space. We also study
the complete metric space.

5.1 Convergent sequences

Recall that a sequence in a metric space X is a map f : ℕ → X . If f (n) = xn, then xn is
called the nth term of the sequence. We denote a sequence by (xn) or

x1, x2, . . . , xn, . . . .

Example 5.1.1. Let c ∈ X . Then the map f : ℕ → X defined by f (n) = c for all n ∈ ℕ is
called a constant sequence in X .

Example 5.1.2. Letm ∈ ℕ and c ∈ X . Let (xn) be a sequence in X such that xn = c for all
n > m. We say that this sequence is constant on the tail.

Definition 5.1.3. A sequence (xn) in a metric space X is said to converge to a point x in
X if each open ball B(x, ϵ) around x contains all but finitely many terms of the sequence
(xn) or, equivalently, if for each ϵ > 0, there exists k ∈ ℕ such that

n ≥ k ⇒ d(xn, x) < ϵ.

If a sequence (xn) inX converges to x ∈ X , thenwe say that (xn) is a convergent sequence.

If a sequence (xn) converges to x ∈ X , then we also say that x is the limit of (xn) or
xn tends to x. We denote this by

lim
n→∞

xn = x or xn → x.

A sequence (xn) in X that is not convergent is called a divergent sequence. Observe from
the definition that if a sequence (xn) inX converges to x ∈ X , then the sequence (d(xn, x))
converges to 0 in the real line.

Example 5.1.4. A constant sequence (c) in a metric space X is convergent, since for any
ϵ > 0, the open ball B(c, ϵ) contains all the terms of the sequence.

Example 5.1.5. Consider the sequence ( 1n ) in the real line ℝ. Let ϵ > 0. By the Archime-
dean property there exists k ∈ ℕ such that k > 1

ϵ . This implies that

n ≥ k ⇒ 1
n
≤
1
k
< ϵ.

In other words,

https://doi.org/10.1515/9783111636085-005
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n ≥ k ⇒
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
n
− 0
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< ϵ.

Therefore 1
n → 0.

Example 5.1.6. The sequence ( 1n ) is not convergent in (0, 1] with the metric induced by
that of the real line. On the contrary, suppose that it converges to x ∈ (0, 1]. Then for
ϵ = x

2 , there is k ∈ ℕ such that

n ≥ k ⇒
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
n
− x
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
<
x
2
.

This implies that

n ≥ k ⇒ x
2
<
1
n
.

This is a contradiction.

Example 5.1.7. Let (xn) be a convergent sequence in the discrete metric space X such
that xn → x ∈ X . For ϵ = 1

2 , there is k ∈ ℕ such that

n ≥ k ⇒ d(xn, x) <
1
2
.

This shows that (xn) is constant on the tail.

Example 5.1.8. The sequence (n) in the real lineℝ is divergent. On the contrary, suppose
that (n) converges to some x ∈ ℝ. Then by the Archimedean property there exists k ∈ ℕ
such that k > x. Then for n ≥ k, n > x. Let 0 < ϵ < k − x. Then the open interval
(x − ϵ, x + ϵ) contains no point of the sequence (n), a contradiction.

Example 5.1.9. Consider the sequence (−1)n in the real lineℝ. Note that the open inter-
val (1 − 1

2 , 1 +
1
2 ) leaves infinitely many terms of the sequence (namely, −1) outside this

interval. Therefore 1 can not be the limit of this sequence. Similarly, −1 cannot be the
limit of this sequence. Let x ∈ ℝ \ {1,−1}. Let ϵ = min{|1 − x|, | − 1 − x|}. Then the interval
(x − ϵ, x + ϵ) contains no terms of this sequence. Hence (−1)n is divergent in the real
line ℝ.

Example 5.1.10. Let (xin) be a sequence in a metric space (Xi, di) converging to xi in Xi,
where 1 ≤ i ≤ m. Let Z = ∏mi=1 Xi, and let d be the metric on Z defined by

d(a, b) = (
m
∑
i=1

di(ai, bi)
2)

1
2

for a = (a1, . . . , am) and b = (b1, . . . , bm) in Z. Let ϵ > 0. Then there are ki ∈ ℕ (i ≤ m)
such that
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n ≥ ki ⇒ di(x
i
n, xi) <

ϵ
√m
.

Let k = max{ki, . . . , km}. Then

n ≥ k ⇒ di(x
i
n, xi) <

ϵ
√m
.

Now for n ≥ k, we have

d((x1n, . . . , x
m
n ), (x1, . . . , xm)) = (

m
∑
i=1

di(x
i
n, xi)

2)

1
2

< (
m
∑
i=1

ϵ2

m
)

1
2

= ϵ.

This shows that the sequence (x1n, . . . , x
m
n ) converges to (x1, . . . , xm) in (Z, d).

Let ρ be a metric on Z that is Lipschitz equivalent to d. Then the sequence (x1n, . . . ,
xmn ) converges to (x1, . . . , xm) in (Z, ρ).

Proposition 5.1.11. The limit of a convergent sequence in a metric space X is unique.

Proof. Let a sequence (xn) inX converge to x and y inX . If x ̸= y, then ϵ = |x−y| > 0. Since
xn → x, the open ball B(x, ϵ2 ) contains all but finitely many terms of the sequence (xn).
In this case, the open ball B(y, ϵ2 ) will contain only finitely many terms of the sequence
(xn). This is a contradiction.

Definition 5.1.12. Let f : ℕ → X be a sequence in a metric space X , and let i : ℕ → ℕ
be a strictly increasing sequence map. Then f ∘ i : ℕ→ X is called a subsequence of the
sequence f . We denote the subsequence of a sequence (xn) by (xin ), where in = i(n).

Example 5.1.13. Consider the sequence (xn) in ℝ with xn = n
2, that is, the following

sequence:

1, 4, 9, 16, 25, . . . .

Let i : ℕ → ℕ be the map defined by i(n) = 2n − 1. Then the subsequence (xin ) of the
sequence (xn) is the following:

1, 9, 25, . . . .

Proposition 5.1.14. A subsequence of a convergent sequence in a metric space is conver-
gent.
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Proof. Let (xn) be a sequence in a metric space X such that xn → x in X . Let (xin ) be a
subsequence of (xn). We will show that xin → x. Let ϵ > 0. Since xn → x, there is k ∈ ℕ
such that

n ≥ k ⇒ d(xn, x).

We can inductively observe that in ≥ n for all n ∈ ℕ. Now

in ≥ n⇒ in ≥ k.

Therefore, for in ≥ k, we have d(xin , x) < ϵ. This shows that xin → x.

A divergent sequence may have a convergent subsequence. For example, the se-
quence (−1)n is divergent, but it has a constant subsequence (1).

Proposition 5.1.15. A set A in a metric space X is closed if and only if every sequence in
A that converges in X has its limit in A.

Proof. Let A be closed in X , and let (xn) be a sequence in A such that xn → x ∈ X . We
claim that x ∈ A. On the contrary, suppose that x ∈ X \ A. Since X \ A is open, there is an
open ball B(x, ϵ) contained in X \A. Since the sequence (xn) lies in A, B(x, ϵ) contains no
term of the sequence. This is a contradiction.

Conversely, suppose that every sequence in A that converges in X has its limit in A.
If the derived set D(A) is the empty set, then A is closed. Suppose D(A) ̸= 0 and x ∈ D(A).
Then for each n ∈ ℕ, the open ball B(x, 1n ) contains a point xn of A other than x. In turn,
we get a sequence (xn) in A. We claim that xn → x.

Let ϵ > 0. By the Archimedean property of ℝ, there is k ∈ ℕ such that 1
k < ϵ. Then

xk ∈ B(x,
1
k
) ⊆ B(x, ϵ).

Also, for n ≥ k, we have

xn ∈ B(x,
1
n
) ⊆ B(x, 1

k
) ⊆ B(x, ϵ).

Hence xn → x. By the assumption, x ∈ A. Since x ∈ D(A) is arbitrary, D(A) ⊆ A. This
shows that A is closed.

Example 5.1.16. We can use Proposition 5.1.15 to show that (0, 1] is not closed in ℝ. The
sequence ( 1n ) in (0, 1] converges to 0 in ℝ but not in (0, 1].

Proposition 5.1.17. Let X be a metric space, and let A ⊆ X. Then x ∈ X is a limit point of
A if and only if there is a sequence (xn) of distinct terms in A such that xn → x.
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Proof. Let x ∈ X be a limit point of A. Then there is a point x1 ∈ B(x, 1) ∩ A other than x.
Suppose that we have inductively obtained n distinct terms x1, . . . , xn other than x. Since
the derived set of the set K = {x1, . . . , xn} is empty, K is closed in X . Therefore

B(x, 1
n + 1
) ∩ (X \ K)

is open in X and contains x. Since x is a limit point of A, there is

xn+1 ∈ B(x,
1

n + 1
) ∩ (X \ K) ∩ A

other than x. By an argument similar to that in the proof of Proposition 5.1.15 we get
xn → x.

Conversely, suppose that (xn) is a sequence of distinct terms in A such that xn → x.
Let ϵ > 0. Then there is k ∈ ℕ such that

n ≥ k ⇒ xn ∈ B(x, ϵ).

This shows thatB(x, ϵ) contains a point ofA other than x. Hence x is a limit point ofA.

Proposition 5.1.18. Let X and Y be metric spaces. Then a map f : X → Y is continuous at
x ∈ X if and only if for every sequence (xn) in X such that xn → x, we have f (xn)→ f (x).

Proof. Let f : X → Y be a continuous map at x ∈ X , and let (xn) be a sequence in X such
that xn → x. Choose ϵ > 0 and an open ball B(f (x), ϵ) around f (x). Since f is continuous
at x, there is δ > 0 such that

f (B(x, δ)) ⊆ B(f (x), ϵ). (5.1)

Since xn → x, B(x, δ) contains all but finitely many terms of the sequence (xn). Let

xr1 , xr1 , . . . , xrm

be the terms of the sequence (xn) that are outside the open ball B(x, δ). From equa-
tion (5.1) we see that there are at most m terms of the sequence (f (xn)) that are outside
the open ball B(f (x), ϵ). This shows that f (xn)→ f (x).

Conversely, suppose that f (xn)→ f (x) as xn → x. On the contrary, suppose that f is
not continuous at x. Then there is ϵ > 0 such that for all δ > 0, we have

d(y, x) < δ but d(f (y), f (x)) ≥ ϵ.

In other words,

y ∈ B(x, δ) but f (y) ∉ B(f (x), ϵ).
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For each n ∈ ℕ, choose xn ∈ B(x,
1
n ). By an argument similar to that in the proof of

Proposition 5.1.15 we get xn → x. By the assumption, f (xn)→ f (x). This is a contradiction
as f (xn) ∉ B(f (x), ϵ) for n ∈ ℕ such that

1
n < δ. Hence f is continuous at x.

We may use Proposition 5.1.18 in showing that a certain function is not continuous
at a certain point.

Example 5.1.19. Consider the map f : ℝ→ ℝ defined by

f (x) = {
0 if x ∈ ℚ,
1 if x ∈ ℝ \ℚ.

Let x ∈ ℝ be a rational number. Choose a sequence (xn) of irrational numbers such that
xn → x. Then f (xn) = 1 for all n ∈ ℕ, but f (xn) ↛ f (x) = 0. Hence f is not continuous at
the rational numbers. Similarly, f is not continuous at irrational numbers.

Example 5.1.20. Consider the map f : ℝ2 → ℝ defined by

f (x, y) =
{
{
{

xy
x2+y2 if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

Consider the sequence ( 1n ,
1
n ) in ℝ

2. Note that ( 1n ,
1
n )→ (0, 0) and

f( 1
n
,
1
n
) =

n
n + 1
→ 1.

Since f (0, 0) = 0, f is not continuous at (0, 0).

Let (X , d) be a metric space. Let x, y, a, b ∈ X . By the triangle inequality we have

d(x, y) ≤ d(x, a) + d(a, b) + d(b, y).

This implies that

d(x, y) − d(a, b) ≤ d(x, a) + d(b, y).

By a similar argument we have

d(a, b) − d(x, y) ≤ d(x, a) + d(b, y).

Therefore we have

󵄨󵄨󵄨󵄨d(x, y) − d(a, b)
󵄨󵄨󵄨󵄨 ≤ d(x, a) + d(b, y). (5.2)

Suppose X × X is provided with a metric such that (xn, yn) → (x, y) implies that xn → x
and yn → y, for example,
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d′((x1, y1), (x2, y2)) = d(x1, x2) + d(y1, y2).

By equation (5.2) we have

󵄨󵄨󵄨󵄨d(xn, yn) − d(x, y)
󵄨󵄨󵄨󵄨 ≤ d(xn, x) + d(yn, y).

If (xn, yn) → (x, y), then d(xn, yn) → d(x, y). This shows that under such an assumption,
the metric d is continuous map from X × X to ℝ.

Remark 5.1.21. If X × X is provided with a metric such that (xn, yn) → (x, y) does not
imply that xn → x and yn → y, then the metric d : X × X → ℝ need not by continuous.
For example, consider a bijective map f : X → X which is not continuous such that
xn → x but f (xn)→ u = f (v) ̸= f (x). Define the metric

d′ : X × X → ℝ

by

d′((x1, y1), (x2, y2)) = d(f (x1), f (x2)) + d(f (y1), f (y2)).

Now

d′((xn, 0), (v, 0)) = d(f (xn), f (v)).

Then (xn, 0)→ (v, 0), but xn ↛ v.

Remark 5.1.22. In the forthcoming, we will discuss the product topology. The above re-
mark implies that the product topology is different from the topology induced by such
a metric.

Let us consider the following proposition, whose proof is left as exercise.

Proposition 5.1.23. Let (xn) and (yn) be sequences in ℝ
m such that xn → x and yn → y.

Then
(i) xn + yn → x + y,
(ii) xnyn → xy,
(iii) axn → ax for a ∈ ℝ.

As an application of Propositions 5.1.18 and 5.1.23, we have the following:

Corollary 5.1.24. The binary operation of usual addition, pointwise multiplication from
ℝm × ℝm to ℝm, and the scalar multiplication from ℝ × ℝm to ℝm are continuous maps.

From the inequality

󵄨󵄨󵄨󵄨‖x‖ − ‖y‖
󵄨󵄨󵄨󵄨 ≤ ‖x − y‖
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we see that if xn → x in a normed space V , then ‖xn‖→ ‖x‖ inℝ. This shows that a norm
is a continuous map from V to ℝ.

Proposition 5.1.25. Let d1 and d2 be Lipschitz equivalent metrics on a nonempty set X.
Then a sequence (xn) is convergent in (X , d1) if and only if (xn) is convergent in (X , d2).

Proof. Since d1 and d2 are Lipschitz equivalent, there are positive constants m and M
such that

md1(x, y) ≤ d2(x, y) ≤ Md1(x, y)

for all x, y ∈ X . Let xn be a sequence in (X , d1) such that xn converges to x in (X , d1). Let
ϵ > 0. Then there is k ∈ ℕ such that

n ≥ k ⇒ d1(xn, x) <
ϵ
M
.

Therefore d2(xn, x) < Md1(x, y) < ϵ. This shows that xn → x in (X , d2). We can similarly
show the converse.

Proposition 5.1.26. Let d1 and d2 be metrics on a nonempty set X such that a sequence
(xn) is converges to x in (X , d1) if and only if (xn) is converges to x in (X , d2). Then d1 and
d2 are topologically equivalent.

Proof. Wewill show that the closed sets in (X , d1) and (X , d2) are precisely same. Let F be
a closed set in (X , d1). Let x ∈ X be a limit point of F in (X , d2). Then there is a sequence
(xn) of distinct terms such that xn → x in (X , d2). By the assumption, xn → x in (X , d1).
This shows that x ∈ X is a limit point of F in (X , d1). Since F is closed in (X , d1), x ∈ F .
Therefore F is closed in (X , d2). Similarly, a closed set in (X , d2) is closed in (X , d1).

Example 5.1.27. We have seen that the metric spaces (X , d) and (X , d) are topologically
equivalent, where

d(x, y) = d(x, y)
1 + d(x, y)

.

Let us use Proposition 5.1.26 to show this fact. Let (xn) be a sequence in X such that
xn → x in (X , d). This implies that d(xn, x)→ 0. Then

d(xn, x) =
d(xn, x)

1 + d(xn, x)
≤ d(xn, x)→ 0.

Therefore xn → x in (X , d).
Conversely, suppose that xn → x in (X , d). This implies that d(xn, x) → 0. We claim

that the set {d(xn, x) | n ∈ ℕ} is bounded. On the contrary, suppose that {d(xn, x) | n ∈ ℕ}
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is unbounded. Then for each real numberM > 0, there is k ∈ ℕ such that d(xnk , x) > M .
This will imply that

d(xn, x) =
d(xn, x)

1 + d(xn, x)
→ 1.

This is a contradiction. Suppose d(xn, x) is bounded by some real number L > 0. Then

d(xn, x) =
d(xn, x)

1 + d(xn, x)
≥
d(xn, x)
1 + L
.

This implies that

d(xn, x) ≤ (1 + L)d(xn, x)→ 0.

This shows that xn → x in (X , d).

5.2 Complete metric spaces

In the last section, we defined a convergent sequence. To show that a sequence is conver-
gent, we need to know the point to which it is convergent. Sometimes, it may not be easy
to know to which point a sequence is going to converge. We saw that if a sequence (xn)
converges to a point x, then the terms of the sequence are getting closure to x after some
kth term. We will see that if a sequence is convergent, then the terms of the sequence
will get closure after some kth term. Augustin-Louis Cauchy defined the convergent se-
quence for the real numbers in this way, which we now call a Cauchy sequence. We will
see that a convergent sequence is not exactly the same as a Cauchy sequence.

Definition 5.2.1. A sequence (xn) is a metric space (X , d) is called a Cauchy sequence if
for each ϵ > 0, there exists k ∈ ℕ such that

m, n ≥ k ⇒ d(xm, xn) < ϵ.

Example 5.2.2. Let (xn) be a Cauchy sequence in the discrete metric space (X , d). Then
for ϵ = 1, there is k ∈ ℕ such that

m, n ≥ k ⇒ d(xm, xn) < 1.

This shows that (xn) is constant on tail.

Proposition 5.2.3. A convergent sequence in a metric space is a Cauchy sequence.

Proof. Let (xn) be a convergent sequence in a metric space (X , d) such that xn → x in X .
Let ϵ > 0. Then there is k ∈ ℕ such that
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n ≥ k ⇒ d(xn, x) <
ϵ
2
.

Letm, n ≥ k. Then d(xm, x) <
ϵ
2 and d(xn, x) <

ϵ
2 . By the triangle inequality we have

d(xm, xn) ≤ d(xm, x) + d(xn, x) <
ϵ
2
+
ϵ
2
= ϵ.

Hence (xn) is a Cauchy sequence,

Example 5.2.4. A Cauchy sequence need not be convergent. Consider the subspace (0, 1]
of ℝ with the usual metric. Let ϵ > 0. By the Archimedean property there is k ∈ ℕ such
that 1

k < n. For allm, n ≥ k with n ≥ m, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
m
−
1
n

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

1
m
−
1
n
<

1
m
< ϵ.

This shows that the sequence ( 1n ) is Cauchy. We have seen in Example 5.1.6 that ( 1n ) is
not convergent in (0, 1].

Definition 5.2.5. A sequence (xn) in a metric space is called a bounded sequence if the
set {xn | n ∈ ℕ} is a bounded set in X .

Example 5.2.6. The sequences ((−1)n) and ( 1n ) are bounded sequences inℝ, whereas the
sequence (n2) is not a bounded sequence in ℝ.

Proposition 5.2.7. A Cauchy sequence is a bounded sequence.

Proof. Let (xn) be a Cauchy sequence in a metric space X . For ϵ = 1, there is k ∈ ℕ such
that

m, n ≥ k ⇒ d(xm, xn) < 1.

Let

M = max{d(x1, xk), d(x2, xk), . . . , d(xk−1, xk), 1}.

Note that d(xn, xk) < M + 1 for all n ∈ ℕ. Hence (xn) is a bounded sequence.

Corollary 5.2.8. A convergent sequence is a bounded sequence.

Example 5.2.9. A bounded sequence need not be Cauchy. For example, ((−1)n) is
bounded in ℝ but not Cauchy.

The following result characterizes when a bounded sequence is a Cauchy sequence.

Proposition 5.2.10. Let (xn) be a bounded sequence in a metric space X. For each n ∈ ℕ,
let En = {xl | l ≥ n}. Then (xn) is Cauchy if and only if the sequence (diam(En)) in ℝ
converges to 0.
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Proof. Suppose (xn) is a Cauchy sequence. Let ϵ > 0. Then there is k ∈ ℕ such that

m, n ≥ k ⇒ d(xm, xn) <
ϵ
2
.

Note that xm, xn ∈ Ek . Then diam(Ek) ≤
ϵ
2 . For n ≥ k, En ⊆ Ek . Then

n ≥ k ⇒ 󵄨󵄨󵄨󵄨diam(En) − 0
󵄨󵄨󵄨󵄨 ≤

ϵ
2
< ϵ.

This implies that diam(En)→ 0.
Conversely, suppose that diam(En)→ 0. Let ϵ > 0. Then there is k ∈ ℕ such that

n ≥ k ⇒ 󵄨󵄨󵄨󵄨diam(En) − 0
󵄨󵄨󵄨󵄨 < ϵ.

This implies that d(xm, xn) < ϵ form, n ≥ k, which shows that (xn) is a Cauchy sequence.

Definition 5.2.11. Ametric space (X , d) is called a completemetric space is every Cauchy
sequence in X is convergent. If (X , d) is a complete metric space, then d is called a com-
plete metric on X .

We say that a normed space is complete if the metric induced by the norm is com-
plete. Also, we say that an inner product space is complete if the norm induced by the
inner product is complete. A complete normed space is called a Banach space, and a
complete inner product space is called a Hilbert space.

Example 5.2.12. The discrete metric space is complete.

Example 5.2.13. The space (0, 1) as a subspace of the real line ℝ is not complete.

Remark 5.2.14. We can define a metric on (0, 1) that is topologically equivalent to the
usualmetric on (0, 1) and is completewith respect to the newmetric. For example, define
the metric ρ on (0, 1) by

ρ(x, y) = |x − y| +
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
m(x)
−

1
m(y)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

wherem(x) = min{x, 1 − x}. Then ρ is complete on (0, 1) and topologically equivalent to
the usual metric on (0, 1).

Example 5.2.15. Consider the real line ℝ. Define the map f : ℝ→ ℝ by

f (x) = x
1 + |x|
.

Define the metric d on ℝ by d(x, y) = |f (x) − f (y)|. Note that f is a homeomorphism
between ℝ and (−1, 1). Observe that f is an isometry from (ℝ, d) to the subspace (−1, 1)
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of the real line ℝ. It is easy to observe that (ℝ, d) is topologically equivalent to the real
line but (ℝ, d) is not complete as (−1, 1) is not complete.

Theorem 5.2.16. The set of real numbers ℝ with the usual metric is complete.

Proof. Let (xn) be a Cauchy sequence inℝ. Then it is bounded inℝ. Let l and u be lower
and upper bounds of the set {xn | n ∈ ℝ}, respectively, that is,

l ≤ xn ≤ u for all n ∈ ℕ.

Consider the set

A = {y ∈ ℝ | y ≤ xm for infinitely many terms xm of the sequence}.

Note thatA ̸= 0 since l ∈ A. Also, note thatA is bounded above by u ∈ ℝ. Then by the least
upper bound property of ℝ the supremum of A exists in ℝ. Let x ∈ ℝ be the supremum
of A. We will show that xn → x.

Let ϵ > 0. Since x is the supremum of A, there is z ∈ A such that

x − ϵ
2
< z ≤ x.

Since z ∈ A, infinitely many terms of the sequence are greater than or equal to x − ϵ
2 .

Note that x + ϵ
2 ∉ A; otherwise, x would not be an upper bound of A. Therefore at most

finitely many terms of the sequence are greater than or equal to x + ϵ
2 . Hence the open

interval (x− ϵ2 , x+
ϵ
2 ) contains infinitelymany terms of the sequence. Since (xn) is Cauchy,

there is k ∈ ℕ such that

m, n ≥ k ⇒ |xm − xn| <
ϵ
2
.

Choose xt ∈ (x −
ϵ
2 , x +

ϵ
2 ) such that t > k. Now for s ≥ k, we have

|xs − x| ≤ |xs − xt| + |xt − x|

<
ϵ
2
+
ϵ
2

< ϵ.

Thus xn → x.

By Example 5.1.10 we can see that ℝn with the usual metric is complete. The com-
pleteness is not preserved under a homeomorphism as ℝ is complete but (0, 1) is not
complete. A homeomorphism can send a Cauchy sequence to a non-Cauchy sequence.
For example, ( 1n+1 ) is a Cauchy sequence in (0, 1), and the map f : (0, 1)→ (1,∞) defined
by f (x) = 1

x is a homeomorphism, but (f ( 1n+1 )) = (n + 1) is not a Cauchy sequence in
(1,∞). We can easily observe that the completeness and being a Cauchy sequence are
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preserved under an isometry. We leave this as an exercise. We can also easily observe
the following proposition, whose proof is left as an exercise.

Proposition 5.2.17. Let d1 and d2 be Lipschitz equivalent metrics on a nonempty set X.
Then a sequence (xn) is Cauchy in (X , d1) if and only if it is Cauchy in (X , d2). In particular,
(X , d1) is complete if and only if (X , d2) is complete.

Topologically equivalent metrics on a metric space X may not preserve the com-
pleteness. Let f : ℝ→ (0, 1) be a homeomorphism. Define the metric ρ on ℝ by

ρ(x, y) = 󵄨󵄨󵄨󵄨f (x) − f (y)
󵄨󵄨󵄨󵄨.

Then f is an isometry from (ℝ, ρ) to (0, 1)with the usual metric. This shows that (ℝ, ρ) is
not complete. Now the identitymap I = f −1 ∘f is a homeomorphism from (ℝ, ρ) toℝwith
the usual metric. This shows that ρ and the usual metric are topologically equivalent
metrics on ℝ.

Theorem 5.2.18. The normed space (C𝔽[a, b], ‖ ⋅ ‖∞) of continuous maps from [a, b] to 𝔽,
where

‖f ‖∞ = sup{
󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨 | x ∈ [a, b]},

is complete.

Proof. Let (fn) be a Cauchy sequence in C𝔽[a, b]. Let ϵ > 0. Then there exists k ∈ ℕ such
that

m, n ≥ k ⇒ ‖fm − fn‖∞ <
ϵ
3
.

This implies that form, n ≥ k and for all x ∈ [a, b],

󵄨󵄨󵄨󵄨fm(x) − fn(x)
󵄨󵄨󵄨󵄨 ≤ ‖fm − fn‖∞ <

ϵ
3
.

Therefore, for each x ∈ [a, b], (fn(x)) is a Cauchy sequence in 𝔽. Since 𝔽 is complete,
fn(x) → yx in 𝔽 for all x ∈ [a, b]. This defines the map f : [a, b] → 𝔽 by f (x) = yx . We
claim that fn → f and f ∈ C𝔽[a, b].

Since the absolute value defines a continuousmap, by Proposition 5.1.18, for alln ≥ k
and for all x ∈ [a, b], we have

󵄨󵄨󵄨󵄨f (x) − fn(x)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨 limn→∞

fm(x) − fn(x)
󵄨󵄨󵄨󵄨󵄨󵄨

= lim
n→∞
󵄨󵄨󵄨󵄨fm(x) − fn(x)

󵄨󵄨󵄨󵄨

≤
ϵ
3
.

Since k is independent of x, fn → f .
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Let n ≥ k and u ∈ [a, b]. Since fn is continuous, there is δ > 0 such that

|x − u| < δ ⇒ 󵄨󵄨󵄨󵄨fn(x) − fn(u)
󵄨󵄨󵄨󵄨 <

ϵ
3
.

Let u ∈ [a, b] be such that |x − u| < δ and n ≥ k. Then

󵄨󵄨󵄨󵄨f (x) − f (u)
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨f (x) − fn(x)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨fn(x) − fn(u)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨fn(u) − f (u)

󵄨󵄨󵄨󵄨

<
ϵ
3
+
ϵ
3
+
ϵ
3

= ϵ.

This shows that f is continuous. Hence f ∈ C𝔽[a, b].

Example 5.2.19. The normed space C𝔽[a, b] is not complete with the norm defined by

‖f ‖1 =
b

∫
a

󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨dx.

Consider the sequence (fn) defined by

fn(x) = {
n(x − a) if x ∈ [a, a + 1

n ],

1 if x ∈ [a + 1
n , b].

Note that each fn is continuous map by the pasting lemma. Form > n, we have

‖fm − fn‖1 = (m − n)
a+ 1

m

∫
a

(x − a)dx +
a+ 1n

∫

a+ 1
m

(1 − n(x − a))dx

=
1
2n
−

1
2m

<
1
2n
.

Therefore (fn) is a Cauchy sequence in C𝔽[a, b].
For each x ∈ [a, b], fn(x)→ f (x), where

f (x) = {
0 if x = a,
1 if x ∈ (a, b].

If C𝔽[a, b] is complete, then fn → f . This is a contradiction since f ∉ C𝔽[a, b].

Theorem 5.2.20. The normed space ℓp, where 1 ≤ p ≤∞, is complete.

Proof. We will prove the completeness for 1 ≤ p < ∞. The case p = ∞ is left as an
exercise.
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Let z ∈ ℓp. Then z : ℕ→ 𝔽 is such that

∞
∑
i=1

󵄨󵄨󵄨󵄨z(i)
󵄨󵄨󵄨󵄨
2 <∞.

Let (xn) be a Cauchy sequence in ℓp. Let ϵ > 0. Then there is k ∈ ℕ such that

m, n ≥ k ⇒ ‖xm − xn‖p < ϵ.

For i ∈ ℕ andm, n ≥ k, we have

󵄨󵄨󵄨󵄨xm(i) − xn(i)
󵄨󵄨󵄨󵄨 ≤ ‖xm − xn‖p < ϵ.

This implies that (xn(i)) is a Cauchy sequence in 𝔽 for each i ∈ ℕ. Since 𝔽 is complete,
xn(i) → yi in 𝔽. Hence we get the map x : ℕ → 𝔽 defined by x(i) = yi. Again, since (xn)
is a Cauchy sequence in ℓp, there is k1 ∈ ℕ such that

m, n ≥ k1 ⇒
N
∑
i=1

󵄨󵄨󵄨󵄨xm(i) − xn(i)
󵄨󵄨󵄨󵄨
p ≤ ‖xm − xn‖

p
p <

ϵp

2p
.

Since the absolute value defines a continuous map, we have

n ≥ k1 ⇒
N
∑
i=1

󵄨󵄨󵄨󵄨x − xn(i)
󵄨󵄨󵄨󵄨
p ≤

ϵp

2p
. (5.3)

Since equation (5.3) is true for all N ∈ ℕ, we have

n ≥ k1 ⇒
∞
∑
i=1

󵄨󵄨󵄨󵄨x − xn(i)
󵄨󵄨󵄨󵄨
p ≤

ϵp

2p
.

In other words,

‖xn − x‖p ≤
ϵ
2
< ϵ.

This shows that xn → x. Next, we show that x ∈ ℓp. Now by the triangle inequality we
have

‖x‖p = (
∞
∑
i=1

󵄨󵄨󵄨󵄨x(i)
󵄨󵄨󵄨󵄨
p)

1
p

≤ (
∞
∑
i=1

󵄨󵄨󵄨󵄨x(i) − xn(i)
󵄨󵄨󵄨󵄨
p)

1
p

+ (
∞
∑
i=1

󵄨󵄨󵄨󵄨xn(i)
󵄨󵄨󵄨󵄨
p)

1
p

≤ ϵ
1
p + ‖x‖p.

This shows that x ∈ ℓp.
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Proposition 5.2.21. A metric space X is complete if and only if every Cauchy sequence in
X has a convergent subsequence.

Proof. Let X be a complete metric space. Then every Cauchy sequence being a subse-
quence of itself is convergent.

Conversely, suppose every Cauchy sequence inX has a convergent subsequence. Let
(xn) be a Cauchy sequence in X that contains a subsequence xni such that xni → x in X .
Let ϵ > 0. Then there is k ∈ ℕ such that

m, n ≥ k ⇒ d(xm, xn) <
ϵ
2
.

Choose ni ∈ ℕ with ni ≥ k such that

d(xni , x) <
ϵ
2
.

Now for n ≥ k, we have

d(xn, x) ≤ d(xn, xni ) + d(xni , x)

<
ϵ
2
+
ϵ
2

= ϵ.

Hence xn → x.

Now we are interested in which sets in a complete metric space are complete as
subspaces.

Proposition 5.2.22. Let X be a complete metric space. Then a set F in X is complete if and
only if F is closed.

Proof. Suppose that a set F in a completemetric space X is complete. Let x ∈ X be a limit
point of F . There is a sequence (xn) in F such that xn → x. Since a convergent sequence
is Cauchy, (xn) is Cauchy in F . Since F is complete, x ∈ F . This shows that F is closed in X .

Conversely, suppose that F is a closed set in a complete metric space X . Let (xn) be
a Cauchy sequence in F . Then (xn) is also a Cauchy sequence in X . Since X is complete,
xn → x in X . Let

A = {xn ∈ F | n ∈ ℕ} ⊆ F ⊆ X .

Then the set A is either finite or infinite. First, suppose that A is finite. Since (xn) is con-
vergent in X , the point x has to repeat infinitely times and must be from A. Therefore
x ∈ F .

Now suppose that A is infinite. Then x is a limit point of A. Since A ⊆ F , x is a limit
point of F . Since F is closed, x ∈ F . Hence F is complete.
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Proposition 5.2.23. Let W be a finite-dimensional subspace of a normed space V. Then
W is closed in V.

Proof. Since W is finite dimensional over 𝔽, we can isometrically identify W with 𝔽n

for some n ∈ ℕ. Since 𝔽n is complete,W is complete. Let (xn) be a sequence inW such
that xn → x in V . Then (xn) is Cauchy inW . SinceW is complete, x ∈ W . This shows that
W is closed.

We have seen above that a Cauchy sequence in not preserved under a homeomor-
phism, in particular under a continuousmap.Wewill see below that a Cauchy sequence
is preserved under a uniformly continuous map.

Proposition 5.2.24. Let f : X → Y be a uniformly continuous map. If (xn) is a Cauchy
sequence in X, then (f (xn)) is a Cauchy sequence in Y .

Proof. Let (xn) be a Cauchy sequence in X , and let yn = f (xn). Let ϵ > 0. Since f is
uniformly continuous, there is δ > 0 such that for all x, y ∈ X , we have

d(x, y) < δ ⇒ d(f (x), f (y)) < ϵ. (5.4)

Since (xn) is a Cauchy sequence, there is k ∈ ℕ such that

m, n ≥ k ⇒ d(xm, xn) < δ. (5.5)

By equations (5.4) and (5.5) we have

m, n ≥ k ⇒ d(f (xm), f (xn)) < ϵ.

This shows that (f (xn)) is a Cauchy sequence in Y .

Theorem 5.2.25 (Continuous extension theorem). Let A be a subspace of a metric space
X, and let f : A→ Y be a uniformly continuous map, where Y is a complete metric space.
Then there is a unique continuous map g : ClA→ Y such that g(a) = f (a) for all a ∈ A.

Proof. Let x ∈ ClA. Then there is a sequence (xn) in A such that xn → x. Note (xn) is a
Cauchy sequence in A. By Proposition 5.2.24 (f (xn)) is a Cauchy sequence in Y . Since Y is
complete, f (xn)→ yx in Y .

Suppose (zn) is another sequence inA such that zn → x. Then by a similar argument,
f (zn)→ zx in Y . Let ϵ > 0. Since f is uniformly continuous on A, there is δ > 0 such that
for all a, b ∈ A, we have

d(a, b) < δ ⇒ d(f (a), f (b)) < ϵ
3
. (5.6)

Since xn → x, there is k1 ∈ ℕ such that

n ≥ k1 ⇒ d(xn, x) <
δ
2
. (5.7)
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Similarly, as zn → x, there is k2 ∈ ℕ such that

n ≥ k2 ⇒ d(zn, x) <
δ
2
. (5.8)

Let k′ = max{k1, k2}. Then for k
′ ∈ ℕ, equations (5.7) and (5.8) hold. Then

n ≥ k′ ⇒ d(xn, zn) ≤ d(xn, x) + d(zn, x)

<
δ
2
+
δ
2

= δ. (5.9)

This implies that d(xn, zn)→ 0. By equations (5.6) and (5.8) we have

n ≥ k′ ⇒ d(f (xn), f (zn)) <
ϵ
3
. (5.10)

Since f (xn)→ yx , there is k3 ∈ ℕ such that

n ≥ k3 ⇒ d(f (xn), yx) <
ϵ
3
. (5.11)

Since f (zn)→ zx , there is k4 ∈ ℕ such that

n ≥ k3 ⇒ d(f (zn), zx) <
ϵ
3
. (5.12)

Let k = max{k′, k3, k4}. Then for k ∈ ℕ, equations (5.10), (5.11), and (5.12) hold.
Now for n ≥ k, we have

d(yx , zx) ≤ d(yx , f (xn)) + d(f (xn), f (zn)) + d(f (zn), zx)

<
ϵ
3
+
ϵ
3
+
ϵ
3

= ϵ.

Since ϵ > 0 is arbitrary, yx = zx . Thus we have the map g : ClA→ Y defined by

g(x) = {
f (x) if x ∈ A,
limn→∞ f (xn) if x ∈ ClA \ A,

where (xn) is a sequence in A such that xn → x.
Now we will show that g is continuous. We will in fact show that g is uniformly

continuous on ClA. Since f is uniformly continuous on A, for a given ϵ > 0, there is δ > 0
such that for a, b ∈ A, we have

d(a, b) < δ ⇒ d(f (a), f (b)) < ϵ. (5.13)
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Let x, y ∈ ClA be such that d(x, y) < δ
3 . Choose sequences (xn) and (yn) in A such that

xn → x and yn → y. Then there are k5, k6 ∈ ℕ such that

n ≥ k5 ⇒ d(xn, x) <
δ
3

(5.14)

and

n ≥ k6 ⇒ d(yn, y) <
δ
3
. (5.15)

Let k′′ = max{k5, k6}. Then for k
′′ ∈ ℕ, equations (5.14) and (5.14) hold. Now, for n ≥ k′′,

we have

d(xn, yn) ≤ d(xn, x) + d(x, y) + d(yn, y)

<
δ
3
+
δ
3
+
δ
3

= δ.

Now for n ≥ k′′, we have

d(g(x), g(y)) = d( lim
n→∞

f (xn), limn→∞
f (yn))

= lim
n→∞

d(f (xn), f (yn))

≤ ϵ.

This shows that g is uniformly continuous on ClA.
Now we will prove that such a map g is unique. Let h : ClA → Y be a continuous

map such that h(a) = f (a) for all a ∈ A. If x ∈ A, then g(x) = f (x) = h(x). Let x ∈ ClA \ A.
Let (xn) be a sequence in A such that xn → x. Then

g(x) = lim
n→∞

f (xn)

= lim
n→∞

h(xn)

= h( lim
n→∞

xn)

= h(x).

This shows that g = h.

Example 5.2.26. Themap f : (0, 1)→ ℝ defined by f (x) = 1
x is not uniformly continuous

on (0, 1); otherwise, it would have a continuous extension g of f on [0, 1], which is not
possible.

Let us observe an important property of a complete metric space.
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Theorem 5.2.27 (Cantor’s intersection theorem). Let X be a completemetric space, and let
(Fn) be a sequence of closed, bounded, and nonempty sets in X such that
(i) Fn ⊇ Fn+1 for all n ∈ ℕ and
(ii) diam(Fn)→ 0.

Then⋂n∈ℕ Fn is a singleton set.

Proof. For each n ∈ ℕ, choose xn ∈ Fn. Let ϵ > 0. Since diam(Fn) → 0, there is k ∈ ℕ
such that

n ≥ k ⇒ diam(Fn) < ϵ.

In particular, diam(Fk) < ϵ. This implies that

m, n ≥ k ⇒ d(xm, xn) < ϵ.

Therefore (xn) is a Cauchy sequence in X . Since X is complete, xn → x in X . We claim
that⋂n∈ℕ Fn = {x}.

We first observe that x lies in each Fn. First, suppose that the set of the terms of the
sequence (xn) is finite. Then the sequence (xn) is constant on the tail. Clearly, x ∈ Fn
in this case. Now suppose that the set of the terms of the sequence (xn) is infinite. Let
En = {xl | l ≥ n}. Then x is a limit point of En for all n ∈ ℕ. Since En ⊆ Fn, x is a limit
point of Fn. Since Fn is closed, x ∈ Fn for all n ∈ ℕ.

Let y ∈ ⋂n∈ℕ Fn be such that y ̸= x. Then we can note that diam(Fn) ↛ 0. This is a
contradiction.

Let us see an application of Cantor’s intersection theorem. Let b be a positive integer
such that b ≥ 2. Note that any positive real number x can be represented as n+ r, where
n ∈ ℤ and r ∈ [0, 1]. Applying the division algorithm, we can show that any positive
integer can be represented in the base b. Now we will show that any real number in
[0, 1] can also be represented in the base b. We will adopt the following steps.

In the first step, divide [0, 1] into b equal parts as follows:

0
b
<
1
b
< ⋅ ⋅ ⋅ <

a
b
<
a + 1
b
< ⋅ ⋅ ⋅ <

b − 1
b
<
b
b
.

If [ ab ,
a+1
b ] is a subinterval from the first step, then a ∈ {0, 1, . . . , b − 1}. By the notation

( a1a2 ⋅⋅⋅akbk ) we mean that

a1
b
+
a1
b2
+ ⋅ ⋅ ⋅ +

ak
bk
.

Now divide the first step subintervals into b equal parts. Let A1(a1) = [
a1
b ,

a1+1
b ] be one of

the subintervals. Then we have
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(
a10
b2
) < (

a11
b2
) < ⋅ ⋅ ⋅ < (

a1a2
b2
) < (

a1a2 + 1
b2
) < ⋅ ⋅ ⋅ <

a1 + 1
b
.

In this step, we get the subintervals A2(a1, a2) = [(
a1a2
b2 ), (

a1a2+1
b2 )], where a2 ∈ {0, 1, . . . , b−

1}. Inductively, in the nth step, we get the subinterval

An(a1, . . . , an) = [(
a1a2 ⋅ ⋅ ⋅ an

bn
),(

a1a2 ⋅ ⋅ ⋅ an + 1
bn

)],

where an ∈ {0, 1, . . . , b − 1}. Thus we get the decreasing sequence of closed intervals

[0, 1] ⊇ A1(a1) ⊇ ⋅ ⋅ ⋅ ⊇ An(a1, . . . , an) ⊇ ⋅ ⋅ ⋅ .

By Cantor’s intersection theorem,⋂∞n=1 An(a1, . . . , an) is a singleton set, say {r}. Note that
for any n ∈ ℕ, we have

a1
b
+
a1
b2
+ ⋅ ⋅ ⋅ +

an
bn
≤ r < a1

b
+
a1
b2
+ ⋅ ⋅ ⋅ +

an
bn
+

1
bn
.

This implies that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
r − a1

b
+
a1
b2
+ ⋅ ⋅ ⋅ +

an
bn
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
<

1
bn
.

This shows that the series

a1
b
+
a1
b2
+ ⋅ ⋅ ⋅ +

an
bn
+ ⋅ ⋅ ⋅

converges to r. We will represent r as (0.a1a2 ⋅ ⋅ ⋅)b in the base b.
Now we claim that each real number in [0, 1] can be represented in base b. Let

r ∈ [0, 1]. Note that r belongs to at least one subinterval at each step of division of the
intervals into b equal parts. Therefore r is the intersection point of one sequence of de-
creasing intervals

[0, 1] ⊇ A1(a1) ⊇ ⋅ ⋅ ⋅ ⊇ An(a1, . . . , an) ⊇ ⋅ ⋅ ⋅ .

Consider the end point ( a1a2 ⋅⋅⋅anbn ) of the subinterval at any particular step. We wish to
find the representation of such an end point in the base b. We can further divide the
subintervals either considering this point on the left of each subintervals afterward or
considering this point on the right of each subintervals afterward. Thus such points have
two representations; one terminates in the digit zero, and the other in b − 1. The points
other than end points lie in the unique subintervals at each step. Therefore the other
points have unique representations in the base b.
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5.3 Completion of a metric space

In this section, we will complete ametric space. Wewill show that it satisfies a universal
property.

Definition 5.3.1. A metric space (X̂ , d̂) is called a completion of a metric space (X , d) if
(X̂ , d̂) is complete and (X , d) is isometrically embedded in (X̂ , d̂) as a dense set.

First, we will prove that a completion (if exists) of a metric satisfies some universal
property. Later, we will show that the completion of each metric space exists.

Theorem 5.3.2. Let (X , dX ) be a metric space, and let (X̂ , d̂) be a complete metric space.
Let f : X → X̂ be an isometric embedding. Then the image f (X) is dense in X̂ if and only if
given any complete metric space (Y , dY ) and an isometric embedding g : X → Y, there is
a unique isometry ψ : X̂ → Y such that the following diagram is commutative:

X X̂

Y

g

f

ψ

Proof. Suppose that f (X) is dense in X̂ . Let (Y , dY ) be a complete metric space, and let g
be an isometric embedding from X to Y . Note that f −1 : f (X) → X is an isometry. Then
h = g ∘ f −1 is an isometric embedding from f (X) to Y . Define the map ψ : X̂ → Y by

ψ(x) = {
h(x) if x ∈ f (X),
limn→∞ h(xn) if x ∈ X̂ \ f (X),

where (xn) is a sequence in f (X) such that xn → x. We can indeed check that ψ is well
defined and ψ is an isometry. We can also check that such a map ψ is unique. Now for
all x ∈ X , we have

ψ ∘ f (x) = ψ(f (x))

= h(f (x))

= g ∘ f −1(f (x))

= g(x).

This implies that ψ ∘ f = g.
If ϕ : X̂ → Y is an isometry making the above diagram commutative, then

ϕ ∘ f = g = ψ ∘ f .

Since f (X) is dense in X̂ , ψ = ϕ.
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Now suppose the converse assumption holds. Since a closed set in a completemetric
space is complete, Cl f (X) is complete. Note that f : X → Cl f (X) is complete. By the
assumption there is a unique isometry ψ : X̂ → Cl f (X) such that ψ ∘ f = f . This implies
that ψ is the identity map on f (X). Therefore ψ is the identity map on Cl f (X). This shows
that Cl f (X) = X̂ . Hence f (X) is dense in X̂ .

Corollary 5.3.3. Suppose that a completion of a metric space (X , d) exists. Then it is
unique up to isometry.

Proof. Let (X1, d1) and (X2, d2) be two completions of ametric space (X , d). Let i1 : X → X1
and i2 : X → X2 be isometric embeddings such that i1(X) and i2(X) are dense in X1 and
X2, respectively. By Theorem 5.3.2 there exists a unique isometry ψ : X1 → X2 such that
ψ ∘ i1 = i2.

Now we show that the completion of each metric space exists. First, we observe the
following:

Proposition 5.3.4. Let (X , d) be a metric space, and let A be a dense set in X. Suppose that
any Cauchy sequence (xn) in A converges in X. Then X is complete.

Proof. Let (xn) be a Cauchy sequence in X . Let ϵ > 0. Then there is N ∈ ℕ such that

r, s ≥ N ⇒ d(xr , xs) <
ϵ
3
.

Since A is dense in X , for each xn, there is a sequence (x
k
n ) in A such that xkn → xn as

k →∞. Note that (xkn ) is a Cauchy sequence in A. Thus there is kn ∈ ℕ such that

m ≥ kn ⇒ d(xmn , xn) <
ϵ
3
.

In particular, we have

d(xknn , xn) <
ϵ
3
.

We can choose kn ∈ ℕ such that

k1 < k2 < ⋅ ⋅ ⋅ .

Next, we show that (xknn )n∈ℕ is a Cauchy sequence in A. Now for r, s ≥ N , we have

d(xkrr , x
ks
s ) ≤ d(x

kr
r , xr) + d(xr , xs) + d(xs, x

ks
s )

<
ϵ
3
+
ϵ
3
+
ϵ
3

= ϵ.
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Hence (xknn ) is a Cauchy sequence in A. By the assumption there is x ∈ X such that
xknn → x. Then for arbitrary ϵ > 0, there isM ∈ ℕ such that

n ≥ M ⇒ d(xknn , x) <
ϵ
2
.

Finally, we show that xn → x. For n ≥ M , we have

d(xn, x) ≤ d(xn, x
kn
n ) + d(x

kn
n , x)

<
ϵ
2
+
ϵ
2

= ϵ.

This shows that X is complete.

Theorem 5.3.5. Every metric space has a completion.

Proof. Let (X , d) be a metric space. Let Z be the collection of all Cauchy sequences in X .
Let us define a relation R on Z as

((xn), (yn)) ∈ R if and only if lim
n→∞

d(xn, yn) = 0.

We can easily show that R is an equivalence relation on Z. Let X̂ denote the quotient set

Z/R = {(xn) | (xn) ∈ Z}.

Let (xn) and (yn) be Cauchy sequences in X . Then we can choose k ∈ ℕ such that

m, n ≥ k ⇒ d(xm, xn) <
ϵ
2

and

d(ym, yn) <
ϵ
2
.

Now by the inequality

󵄨󵄨󵄨󵄨d(a, b) − d(c, d)
󵄨󵄨󵄨󵄨 ≤ d(a, c) + d(b, d)

we see that form, n ≥ k,

󵄨󵄨󵄨󵄨d(xm, ym) − d(xn, yn)
󵄨󵄨󵄨󵄨 ≤ d(xm, xn) + d(ym, yn)

<
ϵ
2
+
ϵ
2

= ϵ.
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Therefore (d(xn, yn)) is a Cauchy sequence in ℝ. Since ℝ is complete, limn→∞ d(xn, yn)
exists.

Now let (an) and (bn) be two Cauchy sequences such that

(an) = (xn) and (bn) = (yn).

Note that

d(xn, yn) ≤ d(xn, an) + d(an, bn) + d(bn, yn).

This implies that

lim
n→∞

d(xn, yn) ≤ lim
n→∞

d(an, bn).

By a similar argument we get

lim
n→∞

d(an, bn) ≤ lim
n→∞

d(xn, yn).

Hence

lim
n→∞

d(an, bn) = lim
n→∞

d(xn, yn).

Thus the above argument shows that we have the map

d̂ : X̂ × X̂ → ℝ

defined by

d̂(x̂, ŷ) = lim
n→∞

d(xn, yn),

where x̂ = (xn) and ŷ = (yn). We claim that d̂ is a metric on X̂ . Clearly, d̂(x̂, ŷ) ≥ 0 and
d̂(x̂, ŷ) = d̂(ŷ, x̂). Also,

d̂(x̂, ŷ) = 0⇐⇒ lim
n→∞

d(xn, yn) = 0

⇐⇒ ((xn), (yn)) ∈ R
⇐⇒ x̂ = ŷ.

Let x̂, ŷ, ẑ ∈ X̂ . Then

d̂(x̂, ŷ) + d̂(ŷ, ẑ) = lim
n→∞

d(xn, yn) + limn→∞
d(yn, zn)

≥ lim
n→∞

d(xn, zn)

= d̂(x̂, ẑ).
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Therefore d̂ is a metric on X̂ . Now we prove that X is isometrically embedded in X̂ . Let
x ∈ X . Then the constant sequence (x) is a Cauchy sequence in X . Let Y be the set of
all equivalence classes of constant sequences in X . Let (x) and (y) be distinct constant
sequences in X . Then x ̸= y. Now

d̂((x), (y)) = lim
n→∞

d(x, y) = d(x, y) ̸= 0.

This means that (x) and (y) are in the distinct equivalence classes. Hence each element
of Y contains only one constant sequence. Let us define the map

f : X → Y ⊆ X̂

by f (x) = (x). Clearly, Im f (X) = Y . Now

d̂(f (x), f (y)) = d̂((x), (y))

= lim
n→∞

d(x, y)

= d(x, y).

Therefore X is isometrically embedded in X̂ .
Next, we will show that Y = f (X) is dense in X̂ . Let x̂ ∈ X̂ and ϵ > 0. Suppose that

(xn) is a Cauchy sequence in X̂ . Then there is k ∈ ℕ such that

m, n ≥ k ⇒ d(xm, xn) <
ϵ
2
.

In particular, we have

m ≥ k ⇒ d(xm, xk) <
ϵ
2
.

Let z = xk . Consider the constant sequence (z). Let ẑ = (z). Then

d̂(x̂, ẑ) = lim
m→∞

d(xm, z)

= lim
m→∞

d(xm, xk)

≤
ϵ
2
< ϵ.

This implies that

ẑ ∈ B(x̂, ϵ) ∩ Y .

Since ϵ > 0 is arbitrary, Cl Y = X̂ . This shows that Y is dense in X̂ .
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Finally, we show that X̂ is complete. Let ̂xn be a Cauchy sequence in f (X) ⊆ X̂ . Let
each ̂xn be represented by the constant sequence

(xn, xn, . . . ).

Equivalently, we have f (xn) = ̂xn. Let ϵ > 0. Then there is k ∈ ℕ such that

m, n ≥ k ⇒ d̂( ̂xm, ̂xn) < ϵ.

Now form, n ≥ k, we have

d(xm, xn) = d̂(f (xm), f (xn))

= d̂( ̂xm, ̂xn)
< ϵ.

This implies that (x1, x2, . . . ) is a Cauchy sequence in X . We can similarly show the re-
verse implication that if (x1, x2, . . . ) is a Cauchy sequence inX , then f (xn) = ̂xn is a Cauchy
sequence in X̂ .

Let x̂ denote the equivalence class of the sequence

(x1, x2, . . . )

in X̂ . We will show that ̂xn → x̂. Let ϵ > 0. Since (x1, x2, . . . ) is a Cauchy sequence in X ,
there k ∈ ℕ such that

m, n ≥ k ⇒ d(xm, xn) < ϵ
2
.

Therefore for eachm ≥ k, we have

d̂( ̂xm, x̂) = lim
n→∞

d(xm, xn) ≤ ϵ
2
< ϵ.

Therefore by Proposition 5.3.4 X̂ is complete.

We have shown the existence of a completion of a metric space through a construc-
tion. Alternatively, we can show the existence as follows.

Let (X , dX ) and (Y , dy) be metric spaces. Let B(X , Y ) denote the set of all bounded
maps from X to Y . Let f , g ∈ B(X , Y ). We can check that

d∞(f , g) = sup{dY (f (x), g(x)) | x ∈ X}

defines a metric on B(X , Y ).

Proposition 5.3.6. Let (X , dX ) and (Y , dY ) be metric spaces. Then (Y , dY ) is complete if
and only if (B(X , Y ), d∞) is complete.
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Proof. Suppose that (Y , dY ) is complete. Let (fn) be a Cauchy sequence in B(X , Y ). Let
ϵ > 0. Then there is k ∈ ℕ such that

m, n ≥ k ⇒ d∞(fm, fn) < ϵ.

Note that dY (fm(x), fn(x)) ≤ d∞(fm, fn) for x ∈ X . Then form, n ≥ k and x ∈ X , we have

dY (fm(x), fn(x)) < ϵ. (5.16)

This implies that (fn(x)) is a Cauchy sequence in Y for each x ∈ X . Since Y is complete,
fn(x) → yx in Y . This defines the map g : X → Y by g(x) = yx . Suppose that X × X is
provided a metric such that the metric d is continuous. Let us take the limit as m →∞
in equation (5.16). By the continuity of d we have

dY (f (x), fn(x)) = dY( limm→∞
fm(x), fn(x))

= lim
m→∞

dY (fm(x), fn(x))

≤ ϵ.

This implies that d∞(fn, f ) ≤ ϵ. This shows that f ∈ B(X , Y ) and fn → f . Hence B(X , Y ) is
complete.

Conversely, suppose thatB(X , Y ) is complete. Let (yn) be a Cauchy sequence in Y . For
each n ∈ ℕ, let fn : X → Y be the constant map fn(x) = yn for all x ∈ X . Note that each
fn is a bounded map and d∞(fm, fn) = dY (ym, yn). Therefore (fn) is a Cauchy sequence in
B(X , Y ). Since B(X , Y ) is complete, fn → f in B(X , Y ).

Let ϵ > 0. Then there is k ∈ ℕ such that

n ≥ k ⇒ d∞(fn, f ) <
ϵ
2
.

This implies that for each x ∈ X , we have

n ≥ k ⇒ dY (fn(x), f (x)) <
ϵ
2
.

Now for any x, y ∈ X , we have

dY (f (x), f (y)) ≤ dY (f (x), fn(x)) + dY (fn(x), fn(y)) + dY (fn(y), f (y))
= dY (f (x), fn(x)) + dY (fn(y), f (y))
≤ 2d∞(fn, f )
< ϵ.

Since ϵ > 0 is arbitrary, dY (f (x), f (y)) = 0. Therefore f (x) = f (y) for all x, y ∈ X . Hence
f is a constant map. Suppose f (x) = c for all x ∈ X . Since dY (yn, c) = d∞(fn, f ), yn → c.
This shows that Y is complete.
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Theorem 5.3.7. Every metric space has a completion.

Proof. Let (X , d) be a metric space. Let us fix c ∈ X . For each a ∈ X , define the map
fa : X → ℝ by

fa(x) = d(x, a) − d(x, c).

Now

󵄨󵄨󵄨󵄨fa(x)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨d(x, a) − d(x, c)

󵄨󵄨󵄨󵄨 ≤ d(a, c).

This implies that fa ∈ B(X ,ℝ), which defines the map f : X → B(X ,ℝ) by f (a) = fa. Let
a, b ∈ X . Then

d∞(f (a), f (b)) = d∞(fa, fb)
= sup{󵄨󵄨󵄨󵄨fa(x) − fb(x)

󵄨󵄨󵄨󵄨 | x ∈ X}
= sup{󵄨󵄨󵄨󵄨d(x, a) − d(x, b)

󵄨󵄨󵄨󵄨 | x ∈ X}
≤ sup{d(a, b) | x ∈ X}
= d(a, b).

For a particular value x = a, we have

d(a, b) = 󵄨󵄨󵄨󵄨d(a, a) − d(a, b)
󵄨󵄨󵄨󵄨 ≤ sup{

󵄨󵄨󵄨󵄨d(x, a) − d(x, b)
󵄨󵄨󵄨󵄨 | x ∈ X}.

This implies that d∞(f (a), f (b)) = d(a, b). This shows that f is an isometric embedding
of X in B(X ,ℝ). Note that B(X ,ℝ) is complete as ℝ is complete. Since Cl f (X) is a closed
set in B(X ,ℝ), Cl f (X) is complete. We can observe that Cl f (X) is a completion of f (X).
Since X is isometric to f (X), Cl f (X) is a completion of X .

Example 5.3.8. In Example 5.2.19,we observed that the spaceC[a, b] of continuousmaps
is not complete with respect to the norm

‖f ‖1 =
b

∫
a

󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨dx.

Its completion is denoted by L1[a, b] and is called the space of Lebesgue-integrable func-
tions.

5.4 Completion ofℚ

In this section, we show that a completion of the set ℚ of rational numbers with the
usual metric is the real line ℝ using the construction described in the previous section.
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Let Z denote the set of all Cauchy sequences in ℚ, and let R be the equivalence
relation on Z described in the previous section. Let ℚ̂ denote the quotient set Z/R. Let
x̂ = (xn) and ŷ = (yn) in ℚ̂. Let us define x̂ + ŷ and x̂ŷ as the equivalence class of (xn + yn)
and (xnyn), respectively. We claim that these are well defined. For this, let (xn) = (an)
and (yn) = (bn). Then

(xn + yn) − (an + bn) = (xn − an) + (yn − bn)→ 0.

Therefore xn + yn = an + bn. Also, since a Cauchy sequence is bounded, there are real
numbersM1 > 0 andM2 > 0 such that |yn| < M1 and |an| < M2. Then

|xnyn − anbn| = |xnyn − anyn + anyn − anbn|
≤ |xn − an||yn| + |an||yn − bn|
≤ |xn − an|M1 +M2|yn − bn|.

Hence xnyn − anbn → 0. Thus the addition and multiplication are well-defined binary
operations on ℚ̂.

Theorem 5.4.1. The triple (ℚ̂,+, ⋅) is a field, where+ and ⋅ are binary operations ℚ̂ defined
above.

Proof. Observe that the equivalence class of the constant sequence (0) and the equiva-
lence class of the constant sequence (1) are the additive and multiplicative identities of
ℚ̂, respectively. We denote these by 0̂ and ̂1, respectively. Also, for a given x̂ = (xn) in ℚ̂,
−x̂ is the equivalence class of (−xn). We will only prove that if x̂ ∈ ℚ̂ with x̂ ̸= 0̂, then
there is ŷ ∈ ℚ̂ such that x̂ŷ = ̂1. The other conditions of a field are left as exercises.

Let x̂ = (xn) ̸= 0̂. This implies that the Cauchy sequence (xn) does not converge to
0. Since (xn) is a Cauchy sequence, for a given ϵ > 0, there is k ∈ ℕ such that for all
n,m ≥ k, we have |xn − xm| < ϵ. In particular, we have

n ≥ k ⇒ |xn − xk | < ϵ.

Since xn ↛ 0, we can choose xk ̸= 0. Equivalently, we can write

n ≥ k ⇒ xk − ϵ < xn < xk + ϵ.

We can choose a suitable ϵ > 0 to ensure that

n ≥ k ⇒ xn ̸= 0.

Define the sequence (yn) by yn =
1
xn
for n ≥ k, letting yn be any fixed rational number

for 1 < n < k. We can check that (yn) is a Cauchy sequence. Let ŷ = (yn). Then x̂ŷ
is the equivalence class of the sequence that is constant 1 on the tail. This shows that
x̂ŷ = ̂1.
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Let x̂ = (xn) ∈ ℚ̂. We say that x̂ is positive (denoted by x̂ > 0̂) if there are a positive
rational number δ and k ∈ ℕ such that

n ≥ k ⇒ xn > δ.

We define the relation < on ℚ̂ as x̂ = (xn) < ŷ = (yn) if ŷ − x̂ > 0̂. Equivalently, if x̂ < ŷ,
then there are a positive rational number δ and k ∈ ℕ such that

n ≥ k ⇒ xn + δ < yn.

We first observe that < is well defined on ℚ̂. For this, let x̂ < ŷ. Then there are a positive
rational number δ and k1 ∈ ℕ such that

n ≥ k1 ⇒ xn + δ < yn. (5.17)

Suppose that (xn) = (an) and (yn) = (bn). This implies that

lim
n→∞
|xn − an| = 0 and lim

n→∞
|yn − bn| = 0.

Then there are k2, k3 ∈ ℕ such that

n ≥ k2 ⇒ |an − xn| <
δ
3

(5.18)

and

n ≥ k3 ⇒ |bn − yn| <
δ
3
. (5.19)

Let k = max{k1, k2, k3}. For k ∈ ℕ, equations (5.17), (5.18), and (5.19) are satisfied. Now
for n ≥ k, we have

an +
δ
3
< xn +

2δ
3
< yn −

δ
3
< bn.

This shows that (an) < (bn). We now prove that given x̂, ŷ ∈ ℚ̂, either x̂ < ŷ or x̂ = ŷ or
ŷ < x̂.

Let x̂ ̸= ŷ. This implies that |xn − yn| ↛ 0. Therefore there is a positive rational
number δ such that for all k ∈ ℕ, there is n ≥ k such that |xn − yn| ≥ δ.

Since (xn) and (yn) are Cauchy sequences, there are l1, l2 ∈ ℕ such that

n ≥ l1 ⇒ |xm − xn| <
δ
3

(5.20)

and

n ≥ l2 ⇒ |ym − yn| <
δ
3
. (5.21)
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Let l′ = max{l1, l2}. For l
′, equations (5.20) and (5.21) hold. Since |xn − yn| ≥ δ, either

xn − yn ≥ δ or xn − yn ≤ −δ.
Let xn − yn ≥ δ. Then form ≥ l

′, we have

xm > xn −
δ
3

≥ yn +
2δ
3

= yn +
δ
3
+
δ
3

> ym +
δ
3
.

This implies that ŷ < x̂. Now if xn −yn ≤ −δ, then yn −xn ≥ δ. Then by a similar argument
as above we get x̂ < ŷ.

We define x̂ ≤ ŷ if x̂ < ŷ or x̂ = ŷ. We can check that ≤ is a partial order relation on
ℚ̂ and (ℚ̂,+, ⋅) is an ordered field.

Theorem 5.4.2 (Archimedean property). Let x̂, ŷ > 0̂. Then there exists m̂ ∈ ℚ̂ such that
m̂x̂ > ŷ, where m̂ is the equivalence class of the constant sequence m ∈ ℕ.

Proof. We have to show that there are a positive rational number δ and k,m ∈ ℕ such
that

n ≥ k ⇒ mxn > yn + δ.

We will prove this by contradiction. On the contrary, suppose that for every rational
δ > 0 and for allm, k ∈ ℕ, there is n ≥ k such that

mxn ≤ yn + δ. (5.22)

Since a Cauchy sequence is bounded, there isM > 0 such that yn < M for all n ∈ ℕ. This
implies that

mxn ≤ yn + δ < M + δ.

Let ϵ > 0. For a fixed δ = δ1 > 0, choosem1 ∈ ℕ such that

M + δ1
m1
<
ϵ
2
.

Therefore, for these δ1 > 0 andm1 ∈ ℕ and for all k ∈ ℕ, there is n ≥ k such that

xn <
M + δ1
m1
<
ϵ
2
.

Since (xn) is a Cauchy sequence, there is k1 ∈ ℕ such that
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r, s ≥ k1 ⇒ |xr − xs| <
ϵ
2
. (5.23)

By the contrary assumption there is l ≥ k1 such that

m1xl ≤ yl + δ1.

Therefore

xl ≤
yl + δ1
m1
<
M + δ1
m1
<
ϵ
2
.

By equation (5.23), for r ≥ k1, we have

xr < xl +
ϵ
2
<
ϵ
2
+
ϵ
2
= ϵ.

This shows that xr → 0. This is a contradiction as x̂ > 0̂.

Nowwe prove that ℚ̂ satisfies the least upper bound property. Before that, we prove
the following:

Proposition 5.4.3. Let 𝔽 be an ordered field such that Archimedean property holds in 𝔽.
Let (xn) be an increasing and bounded above sequence in 𝔽. Then (xn) is a Cauchy se-
quence.

Proof. Let l ∈ 𝔽 be such that xn ≤ l for all n ∈ ℕ. Let ϵ > 0. Then either there is k ∈ ℕ
such that l − ϵ < xk ≤ l, or xn ≤ l − ϵ for all n ∈ ℕ.

First, suppose that there is k ∈ ℕ such that l − ϵ < xk ≤ l. Since (xn) is an increasing
sequence, for all n ≥ k, we have

l − ϵ < xk ≤ xn ≤ l.

This implies that

r, s ≥ k ⇒ |xr − xs| < ϵ.

Now suppose that xn ≤ l− ϵ for all n ∈ ℕ. Then we replace l by l− ϵ. By the Archimedean
property we can findm ∈ ℕ such that

l −mϵ < xk ≤ l − (m − 1)ϵ

for some k ∈ ℕ and xn ≤ l− (m−1)ϵ for all n ∈ ℕ. Let L = l− (m−1)ϵ. Then L−ϵ < xk ≤ L.
By the first case we get

r, s ≥ k ⇒ |xr − xs| < ϵ.

This shows that (xn) is a Cauchy sequence.
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Corollary 5.4.4. Let 𝔽 be an ordered field such that the Archimedean property holds in 𝔽.
Let (xn) be a decreasing and bounded below sequence in𝔽. Then (xn) is a Cauchy sequence.

Theorem 5.4.5. The least upper bound property holds in ℚ̂.

Proof. Let S be a nonempty subset in ℚ̂ that is bounded above by l (to avoid the complex-
ity of the symbol, we drop the hat of the elements). Let a ∈ S. Now we will inductively
define the sequences in ℚ̂. Let x1 = l and y1 = a. Suppose that we have defined the terms
xn and yn. Then we define xn+1 =

xn+yn
2 and yn+1 = yn if

xn+yn
2 is an upper bound of S;

otherwise, we define xn+1 = xn and yn+1 =
xn+yn
2 if xn+yn2 is not an upper bound of S. Since

(yn) is increasing and bounded above by l, by Proposition 5.4.3 (yn) is a Cauchy sequence.
Also, since (xn) is a decreasing sequence bounded below by a, by Corollary 5.4.4 (xn) is
a Cauchy sequence. Since ℚ̂ is complete, xn → x in ℚ̂.

Next, we claim that yn → x. First, suppose that xn+yn
2 is an upper bound of S. Then

xn+1 − yn+1 =
xn + yn

2
− yn =

xn − yn
2
. (5.24)

Now suppose that xn+yn
2 is not an upper bound of S. Then

xn+1 − yn+1 = xn −
xn + yn

2
=
xn − yn

2
. (5.25)

By equations (5.24) and (5.25) we get

xn − yn =
1

2n−1
(l − a).

This implies that limn→∞(xn − yn) = 0. Therefore

lim
n→∞

yn = lim
n→∞

xn = x.

Next, we claim that x is an upper bound of S. On the contrary, suppose that there exists
a ∈ S such that x < a. Then a − x > 0. Note that xn − x is decreasing and xn − x → 0.
Then there exists k ∈ ℕ such that xk − x < a − x. This implies that xk < a. This is a
contradiction as xk is an upper bound of S.

Finally, we claim that x is the least upper bound of S. Let ϵ > 0. Then x − ϵ < x. Note
that (yn) is increasing and yn → x. Then there exists k ∈ ℕ such that

x − ϵ < yk ≤ x.

Since (yn) is increasing,

n ≥ k ⇒ x − ϵ < yn.

Also, note that yn is not an upper bound of S for each n ∈ ℕ. There exists zn ∈ S such
that yn ≤ zn. Therefore for all n ≥ k, we have x − ϵ < zn. Since x is an upper bound of S,
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x − ϵ < zn ≤ x.

This shows that x is the least upper bound of S.

Thus we have proved that ℚ̂ is a complete ordered field. Since a complete ordered
field is isomorphic to ℝ, the completion ofℚ with the usual metric is ℝ.

Let p be a prime. Consider the metric dp onℚ as given in Example 2.1.12. The com-
pletion ofℚwith thismetric is called the p-adic completion ofℚ. Formore detail, see [5].

5.5 Baire category theorem

In this section, we will prove the Baire category theorem and obtain some of its applica-
tions. This concept of category was introduced by R. Baire in his thesis. He divided the
subsets of a metric space into two types or categories.

Definition 5.5.1. Let A and B be two sets in a metric space X . Then A is said to be dense
in B if A ⊆ B and every open set U that intersects B intersects A.

Proposition 5.5.2. Let A and B be two sets in a metric space X. Then A is dense in B if and
only if B ⊆ ClA.

Proof. Suppose that A is dense in B. Let x ∈ B. If x ∈ A, then x ∈ ClA. Now suppose that
x ∉ A. Then every open set around x intersects B and A. This implies that x is a limit
point of A. Therefore x ∈ ClA. This shows that B ⊆ ClA.

Conversely, suppose that B ⊆ ClA. Let U be an open set such that U ∩ B ̸= 0. This
implies that U ∩ ClA ̸= 0. Suppose that x ∈ U ∩ ClA. If x ∈ A, then U ∩ A ̸= 0. Suppose
that x ∉ A. Since x ∈ U , there is an open set V such that x ∈ V ⊆ U . Note that x is a limit
point of A. This implies that V ∩ A ̸= 0. Therefore U ∩ A ̸= 0. Hence A is dense in B.

Definition 5.5.3. A set A in a metric space X is called a nowhere dense set if every
nonempty open set U in X contains a nonempty open set V such that V ∩ A = 0.

Example 5.5.4. Every finite set and a line in ℝn are nowhere dense sets.

Example 5.5.5. The set { 1n | n ∈ ℕ} is nowhere dense set in ℝ.

Example 5.5.6. No nonempty set in the discrete metric space is a nowhere dense set.

We can check that a subset of a nowhere dense set is a nowhere dense set. Also, the
closure of a nowhere dense set is a nowhere dense set. If f : X → Y is a homeomorphism
and A is a nowhere dense set, then f (A) is a nowhere dense set.

Proposition 5.5.7. A finite union of nowhere dense sets is a nowhere dense set.

Proof. Let A1, . . . ,An be nowhere dense sets. We can suppose that each Ai is nonempty.
Let U be a nonempty open set in X . Since A1 is a nowhere dense set, there is a nonempty
open set V1 ⊆ U1 such that V1 ∩ A1 = 0.
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Since A2 is a nowhere dense set, there is a nonempty open set V2 ⊆ V1 such that
V2 ∩ A2 = 0. Inductively, we get a nonempty open set Vn ⊆ Vn−1 such that Vn ∩ An = 0.
Since

Vn ⊆ Vn−1 ⊆ ⋅ ⋅ ⋅ ⊆ V1 ⊆ U

and Vi ∩ Ai ≠ 0, Vn ∩ (⋃Ai) = 0. Therefore⋃Ai is a nowhere dense set.

Example 5.5.8. A countable union of nowhere dense sets need not be a nowhere dense
set. For each n ∈ ℕ, define the set

An = {
m
n
󵄨󵄨󵄨󵄨󵄨󵄨 m ∈ ℤ}.

Then each An is a nowhere dense set. Note that ⋃n∈ℕ An = ℚ, which is not a nowhere
dense set.

Theorem 5.5.9. Let A be a set in a metric space X. Then the following statements are
equivalent:
(i) A is a nowhere dense set;
(ii) Int ClA = 0;
(iii) ClA contains no nonempty open set in X;
(iv) Every nonempty open set U in X contains a nonempty open set V such that V ∩

ClA = 0.

Proof. (ii)⇒ (iii) and (iv)⇒ (i) are obvious. We will prove (i)⇒ (ii) and (iii)⇒ (iv).
Suppose (i) holds. On the contrary, suppose that Int ClA ̸= 0. Let U = Int ClA. By the

assumption there is a nonempty open set V ⊆ U such that V ∩ A = 0. Let x ∈ V . Then
x ∉ A. Since V ∩A = 0, x cannot be a limit point ofA. This implies that x ∉ A∪D(A) = ClA.
This is a contradiction as

x ∈ V ⊆ U = Int ClA ⊆ ClA.

This proves (ii). Now assume (iii). LetU be a nonempty open set inX . ThenU∩(X \ClA) ̸=
0, since otherwise,U ⊆ ClA. SinceU∩(X \ClA) is open, for each x ∈ U∩(X \ClA), there is
an open ballB(x, r) contained inU∩(X \ClA). ThenB(x, r)∩ClA = 0. This proves (iv).

Proposition 5.5.10. A set A in ametric space X is a nowhere dense set if and only if X \ClA
is dense in X.

Proof. Suppose that A is a nowhere dense set. Let x ∈ X . Suppose that x ∈ ClA. Since
Int ClA = 0, x in not an interior point of ClA. This implies that for each r > 0, B(x, r) ̸⊆
ClA. This equivalently means that for each r > 0,

B(x, r) ∩ (X \ ClA) ̸= 0.

This implies that x is a limit point of X \ ClA. This shows that X \ ClA is dense in X .
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Conversely, suppose that X \ ClA is dense in X . Let x ∈ ClA. Then for each r > 0,

B(x, r) ∩ (X \ ClA) ̸= 0.

Therefore B(x, r) ̸⊆ ClA. Hence x is not an interior point of ClA. Since x ∈ ClA is arbi-
trary,

Int ClA = 0.

Therefore A is a nowhere dense set.

Definition 5.5.11. A set A in a metric space X is called a set of first category or meager
if it can be represented as a countable union of nowhere dense sets.

Definition 5.5.12. A set A in a metric space X is called a set of second category if it is not
of first category.

Example 5.5.13. Every nowhere dense set is of first category.

Example 5.5.14. The set of rational numbersℚ is of first category in ℝ.

Consider an open ball B(x, r) in a metric space X . Let y ∈ ClB(x, r). Then we claim
that d(x, y) ≤ r, that is, y ∈ D(x, r).

Suppose that y ∉ D(x, r). Then d(x, y) > r. Let z ∈ B(y, d(x, y) − r) ∩ B(x, r). Then

d(z, y) < d(x, y) − r and d(z, x) < r.

Now

d(x, z) + d(z, y) ≥ d(x, y) > d(z, y) + r.

This implies that d(x, z) > r, a contradiction. Therefore

B(y, d(x, y) − r) ∩ B(x, r) = 0.

Hence y ∉ ClB(x, r). This shows that

y ∈ ClB(x, r)⇒ y ∈ D(x, r).

Thus ClB(x, r) ⊆ D(x, r).
Let U be a nonempty open set, and let x ∈ U . Then there exists an open ball

B(x, r) ⊆ U . Now

B(x, r
2
) ⊆ D(x, r

2
) ⊆ B(x, r) ⊆ U .

Therefore we can find an open ball in U whose closure lies inside U .
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Theorem 5.5.15 (Baire category theorem). A nonempty open set in a complete metric
space is of second category.

Proof. Let X be a complete metric space, and let U be a nonempty open set in X . Let
{An | n ∈ ℕ} be any countable collection of nowhere dense sets. Then we can find an
open ball B(x1, r1) with 0 < r1 < 1 such that

ClB(x1, r1) ⊆ U and ClB(x1, r1) ∩ A1 = 0.

Suppose that we have found B(xn, rn) with 0 < rn <
1
n . Then we can find an open ball

B(xn+1, rn+1) with 0 < rn+1 <
1

n+1 such that

ClB(xn+1, rn+1) ⊆ B(xn, rn) and ClB(xn+1, rn+1) ∩ An+1 = 0.

In turn, we get a sequence (xn) in X . We can check that (xn) is a Cauchy sequence. Since
X is complete, xn → x in X . Note that the subsequence (xn+1, xn+2, . . . ) of (xn) lies in
B(xn+1, rn+1). Since a subsequence of a convergent sequence converges to the same point,

x ∈ ClB(xn+1, rn+1) ⊆ B(xn, rn).

Therefore x ∈ B(xn, rn) for all n ∈ ℕ. Hence x ∉ ⋃
∞
n=1 An. Since x ∈ U , U ̸= ⋃

∞
n=1 An. This

shows that U is of second category.

Corollary 5.5.16. Every complete metric space is of second category.

Corollary 5.5.17. Let X be a complete metric space. Then every countable union of closed
nowhere dense sets in X has an empty interior.

Proof. Let {An | n ∈ ℕ} be a countable family of closed nowhere dense sets. On the
contrary, suppose that

Int(
∞
⋃
n=1

An) ̸= 0.

LetU = Int(⋃∞n=1 An). Consider the collection {An∩U | n ∈ ℕ}. Since a subset of nowhere
dense sets is a nowhere dense set, An ∩ U is a nowhere dense set. Then

U = U ∩
∞
⋃
n=1

An =
∞
⋃
n=1
(U ∩ An).

This implies that U is of first category, a contradiction.

Corollary 5.5.18. Let X be a complete metric space. Then a countable intersection of open
dense sets is dense.
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Proof. Let {Un | n ∈ ℕ} be a countable collection of open dense sets. Then X \ Un is a
closed and nowhere dense set. This implies that

Int(
∞
⋃
n=1

X \ Un) = 0.

This shows that Cl⋂∞n=1 Un = X .

Corollary 5.5.19. Let X be a complete metric space. Let {An | n ∈ ℕ} be a countable
collection of closed sets with empty interior. Then

Int
∞
⋃
n=1

An = 0.

Proof. If An has an empty interior, then X \ An is dense. Also, note that X \ An is open.
Then⋂∞n=1 X \ An is dense. Hence⋃

∞
n=1 An has an empty interior.

Corollary 5.5.20. Let X be a complete metric space. Then every set of first category has
an empty interior.

Proof. Let A be a set of first category in X . Note that a subset of a set of first category is
also of first category. If A has a nonempty interior, then the interior as a subset of Amust
be of first category, a contradiction.

Corollary 5.5.21. Let X be a complete metric space, and let A be of first category. Then
X \ A is dense.

We can construct a function f : ℝ → ℝ that is discontinuous only at finitely many
points. For example, we can consider a continuous map g : ℝ → ℝ and define the
function f : ℝ→ ℝ by

f (x) = {
g(x) if x ̸= a,
b if x = a,

where b ̸= f (a). Then we can check that f is discontinuous at only one point. Consider
the function f : ℝ→ ℝ defined by

f (x) = {
1
n if x = m

n with gcd(m, n) = 1,
0 if x is irrational,

where gcd(m, n) denotes the greatest common divisor of m and n. We can check that f
is continuous at irrationals and discontinuous at rationals. We will see that there does
not exist a function f : ℝ → ℝ that is continuous at rationals and discontinuous at
irrationals.
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Definition 5.5.22. A set A in a metric space is called a Gδ-set if it is a countable intersec-
tion of open sets.

Example 5.5.23. Every open set is a Gδ-set. Since (a, b] = ⋂
∞
n=1(a, b+

1
n ), (a, b] is a Gδ-set.

Proposition 5.5.24. Every closed set in a metric space is a Gδ-set.

Proof. Let X be a metric space, and let F be a closed set in X . For each n ∈ ℕ, define

Fn = ⋃
x∈F

B(x, 1
n
).

Note that Fn is an open set and F ⊆ Fn for all n ∈ ℕ. This implies that F ⊆ ⋂ Fn.
Let y ∈ ⋂ Fn. Let ϵ > 0. By the Archimedean property there is m ∈ ℕ such that

1
m < ϵ. Since y ∈ Fm, there is x ∈ F such that

d(x, y) < 1
m
< ϵ. (5.26)

We claim that y ∈ F . If y ∉ F , then x ̸= y. Then by equation (5.26) we see that y is a limit
point of F . Since F is closed, y ∈ F , a contradiction. Since y ∈ ⋂ Fn is arbitrary,⋂ Fn ⊆ F .
This shows that F = ⋂ Fn. Hence F is a Gδ-set.

Proposition 5.5.25. Let X be a complete metric space. Let A be a subset of X that is count-
able and dense and has no isolated point. Then A is not a Gδ-set.

Proof. Let a ∈ A. Then X \ {a} is open in X . Since A has no isolated point, {a} is not open.
This implies that X \ {a} is not closed. Therefore ClX \ {a} properly contains X \ {a}.
Therefore X \ {a} is dense in X . Note that

X \ A = ⋂
a∈A
(X \ {a}).

Since A is countable, X \ A is a Gδ-set. Also, since X \ {a} is dense, by the Baire category
theorem X \ A is dense.

On the contrary, suppose that A is a Gδ-set. Then there is a countable collection

{Un | n ∈ ℕ}

of open sets such that A = ⋂Un. Since A ⊆ Un for all n ∈ ℕ and A is dense, Un is dense.
Note that

{Un | n ∈ ℕ} ∪ {X \ {a} | a ∈ A}

is a countable collection of open dense sets. By the Baire category theorem the intersec-
tion of these sets is a dense set. This is a contradiction as
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(⋂Un) ∩ ⋂
a∈A
(X \ {a}) = A ∩ (X \ A) = 0.

Let U be an open set in a metric space X . For a real-valued function f : U → ℝ, we
defines the oscillation of f on U as

oscf (U) = sup{f (x) | x ∈ U} − inf{f (x) | x ∈ U}.

We also define the oscillation of f at a ∈ ClU as

oscf (a) = inf{oscf (B(a, r) ∩ U) | r > 0}.

Let X and Y be metric spaces. We can generalize the notion of oscillation for a function
f : A ⊆ X → Y at a ∈ ClA as follows:

oscf (a) = inf{diam(f (A ∩ B(a, r))) | r > 0}.

Proposition 5.5.26. Let X and Y be metric spaces, and let A ⊆ X. Let f : A→ Y be a map.
Then f is continuous at a ∈ A if and only if oscf (a) = 0.

Proof. The oscillation oscf (a) = 0 if and only if for each ϵ > 0, there is an open ball
B(a, r) such that diam(f (A ∩ B(a, r))) < ϵ. This equivalently means that

d(x, a) < r ⇒ d(f (x), f (a)) < ϵ.

Hence oscf (a) = 0 if and only if f is continuous at a ∈ A.

Proposition 5.5.27. Let X and Y be metric spaces. Let A ⊆ X, and let f : A→ Y. Then the
set

Z = {x ∈ ClA | oscf (x) = 0}

is a Gδ-set in ClA.

Proof. For each n ∈ ℕ, define

Z(n) = {x ∈ ClA
󵄨󵄨󵄨󵄨󵄨󵄨 oscf (x) <

1
n
}.

Note that Z = ⋂∞n=1 Z(n). We claim that each Z(n) is an open set in ClA. Note that

oscf (x) = inf{diam(f (A ∩ B(x, r))) | r > 0} <
1
n

if and only if there is s > 0 such that

diam(f (A ∩ B(x, s))) < 1
n
.
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Therefore

Z(n) = {x ∈ ClA
󵄨󵄨󵄨󵄨󵄨󵄨 oscf (x) <

1
n
}

= {x ∈ ClA
󵄨󵄨󵄨󵄨󵄨󵄨 there is s > 0 such that diam(f (A ∩ B(x, s))) <

1
n
}

= ClA ∩ {x ∈ X
󵄨󵄨󵄨󵄨󵄨󵄨 there is s > 0 such that diam(f (A ∩ B(x, s))) <

1
n
}

= ClA ∩ ⋃
x∈X
{B(x, r)

󵄨󵄨󵄨󵄨󵄨󵄨 diam(f (A ∩ B(x, r))) <
1
n
}.

This implies that Z(n) is open in ClA.

Corollary 5.5.28. Let X and Y be metric spaces, and let f : X → Y. Then

Z = {x ∈ ClA | f is continuous at x}

is a Gδ-set.

Proof. By Proposition 5.5.26

Z = {x ∈ X | oscf (x) = 0}.

By Proposition 5.5.27, Z is a Gδ-set.

Corollary 5.5.29. Let X and Y bemetric spaceswith Y a completemetric space. Let A ⊆ X,
and let f : X → Y. Then

Z = {x ∈ ClA | oscf (x) = 0}

is a Gδ-set in X.

Proof. By Proposition 5.5.27, Z is a Gδ-set in ClA. By Proposition 5.5.24, ClA is a Gδ-set
in X . Therefore Z is a Gδ-set in X .

By Proposition 5.5.25, ℚ is not a Gδ-set. Therefore there is no map f : ℝ → ℝ such
that f is continuous at the points ofℚ and discontinuous at the points of ℝ \ℚ. Now it
is natural to ask if there is a function that is continuous exactly on a Gδ-set. We have the
following:

Theorem 5.5.30 (Sung Soo Kim). Let X be a metric space without isolated points, and let
A be a Gδ-set in X. Then there is a function that is continuous exactly on A.

Proof. Since A is a Gδ-set, X \A is a countable union of closed sets An, n ∈ ℕ. Let F1 = A1.
Suppose we have obtained Fn. Then we define Fn+1 = Fn ∪ An+1. Note that each Fn is
closed and Fn ⊆ Fn+1 for all n ∈ ℕ. Also, note that X \ A is a countable union of closed
sets Fn. Define the function g : X → ℝ by g(x) = ∑n∈K

1
2n , where K = {n ∈ ℕ | x ∈ Fn}.
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Note that if x ∈ A, then n→∞, that is the right-hand side of g(x) converges to 0. By
Proposition 3.2.30 we get a dense set B in X whose complement is also dense in X . Let

f (x) = g(x)(χB(x) −
1
2
) = {

g(x)
2 if x ∈ B,
−g(x)
2 if x ∈ X \ B,

where χB(x) is the indicator function on B. We will first observe that f is discontinuous
at every point of X \ A. Let x ∈ X \ A. Then either x ∈ Int(X \ A), or x ∈ (X \ A) ∩ D(A).

Let x ∈ Int(X \ A). Then every open ball around x contains a point of B and a point
of X \B. This implies that every open ball around x contains a point at which the sign of
f is different from the sign of f (x). Therefore f is not continuous at the interior point of
X \ A.

Let x ∈ (X \ A) ∩ D(A). Then every open ball around x contains a point y of A. Note
that f (x) ̸= 0 and f (y) = 0. Therefore f is not continuous at any point of (X \ A) ∩ D(A).
Hence f is not continuous at any point of X \A. By the sequential criterion of continuity
we can observe that the function f is continuous on A.

Let us revisit Remark 5.2.14. Suppose we have a subspace Y of a complete metric
space X that is not complete. It is a natural question whether there is a complete metric
on Y that is topologically equivalent to the subspacemetric on Y . We have the following:

Theorem 5.5.31. Let (X , d) be a complete metric, and let Y be a Gδ-set in X. Then there is
a complete metric ρ on Y that is topologically equivalent to the subspace metric d on Y .

Proof. Since Y is a Gδ-set, Y = ⋂
∞
i=1 Ui, where {Ui | i ∈ ℕ} is a countable family of open

sets. Let y1, y2 ∈ Y . Define ρ : Y × Y → ℝ by

ρ(y1, y2) = d(y1, y2) +
∞
∑
i=1

1
2i
min{1,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
d(y1,X \ Ui)

−
1

d(y2,X \ Ui)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
}.

We can check that ρ is a complete metric on Y that is topologically equivalent to the
metric d on Y .

In Theorem 5.5.31, we considered the subspace Y to be a Gδ-set. This is a necessary
requirement as observed below.We leave its proof as an exercise, which can be obtained
by a little effort.

Theorem 5.5.32. Let (X , d) be a metric, and let Y be a subspace of X. Suppose there is a
complete metric ρ on Y that is topologically equivalent to the subspace metric d on Y .
Then Y is a Gδ-set in X.

Let us see another application of the Baire category theorem.
Let X and Y be metric spaces. Let a ∈ X . Then a collection ℱ of maps from X to Y is

called pointwise bounded if the set {f (a) | f ∈ ℱ} is bounded in Y .
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A collection ℱ of maps from X to Y is called uniformly bounded on A ⊆ X if the set
{f (x) | f ∈ ℱ , x ∈ A} is bounded in Y .

Theorem 5.5.33 (Osgood theorem). Let X and Y be metric spaces with X a complete met-
ric space. Let a collection ℱ of continuous maps from X to Y be pointwise bounded for
each x ∈ X. Then there is a nonempty open set U such that ℱ is uniformly bounded on U.

Proof. Let a ∈ X . For each n ∈ ℕ, define

An = {x ∈ X | f (x) ∈ ClB(a, n) for all f ∈ ℱ}.

Then

An = ⋂
f ∈ℱ

f −1(ClB(a, n)).

Since f is continuous, An is closed. Since ℱ is pointwise bonded, for each x ∈ X , there is
n ∈ ℕ such that

{f (x) | f ∈ ℱ} ⊆ B(a, n) ⊆ ClB(a, n).

This shows that X = ⋃∞n=1 An. By Corollary 5.5.19 there is m ∈ ℕ such IntAm ̸= 0. Let
U = IntAm. By the definition of Am,

{f (x) | f ∈ ℱ , x ∈ U} ⊆ ClB(a,m).

Hence ℱ is uniformly bounded on U .

We have the experience in calculus that a continuous function whose graph has a
corner at some point is not differentiable at that point. It is natural to ask whether there
are continuous functions that are nowhere differentiable. At first it seems impossible,
but the Baire category theorem ensures that the collection of such functions is dense in
the space of continuous functions with the supremummetric d∞.

By a continuous piecewise linear function f : [0, 1] → ℝ we mean a continuous
function whose graph contains finitely many line segments. It is left as an exercise to
check that the set of all continuous piecewise linear functions is dense in (C[0, 1], d∞).

The function ψ : ℝ→ ℝ defined by

ψ(x) = min{x − [x], [x] + 1 − x}

is called the triangular sawtooth function, where [x] denotes the greatest integer func-
tion. We will use the result proved later that every sequence in the closed interval [a, b]
has a convergent subsequence.

Theorem 5.5.34. The set of all nowhere differentiable functions is dense in (C[0, 1], d∞).
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Proof. Let us consider the complement of the set of all nowhere differentiable functions
in C[0, 1]. If a function f ∈ C[0, 1] is differentiable at some point x ∈ [0, 1), then the right-
hand difference quotients

f (x + h) − f (x)
h

(0 < h < 1 − x)

are bounded. For each n ∈ ℕ, define the set

An = {f ∈ C[0, 1]
󵄨󵄨󵄨󵄨󵄨󵄨 for some x ∈ [0, 1 −

1
n
],

󵄨󵄨󵄨󵄨f (x + h) − f (x)
󵄨󵄨󵄨󵄨 ≤ nh for all 0 < h < 1 − x}.

Let A = ⋃An. Then A is the set of all continuous functions f ∈ C[0, 1] that have the right-
hand derivative at some point in [0, 1). The complement of A in C[0, 1] is the set of all
nowhere differentiable functions in C[0, 1].

We first show that each An is closed. Let f ∈ ClAn. Then there is a sequence (fm) in
An such that fm → f . Since fm ∈ An, there is a point xm ∈ [0, 1 −

1
n ] such that

󵄨󵄨󵄨󵄨fm(xm + h) − f (xm)
󵄨󵄨󵄨󵄨 ≤ nh for all 0 < h < 1 − xm.

This gives a sequence (xm) in [0, 1 −
1
n ]. Then it has a convergent subsequence that con-

verges to some point a ∈ [0, 1 − 1
n ]. We may reindex to assume that xm → a.

Let 0 < h < 1 − a. Then we claim that there is k ∈ ℕ such that 0 < h < 1 − xk . On the
contrary, suppose that for each n ∈ ℕ, there is M > n such that 1 − xN ≤ h. This would
imply that 1 − a ≤ h, a contradiction. Now by the triangle inequality we have

󵄨󵄨󵄨󵄨f (a + h) − f (a)
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨f (a + h) − f (xk + h)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨f (xk + h) − fk(xk + h)

󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨fk(xk + h) − fk(xk)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨fk(xk) − f (xk)

󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨f (xk) − f (a)

󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨f (a + h) − f (xk + h)

󵄨󵄨󵄨󵄨 + d∞(f , fk) + nh
+ d∞(fk , f ) +

󵄨󵄨󵄨󵄨f (xk) − f (a)
󵄨󵄨󵄨󵄨.

Since f is continuous, taking the limit as k →∞, we have

󵄨󵄨󵄨󵄨f (a + h) − f (a)
󵄨󵄨󵄨󵄨 ≤ nh.

This implies that f ∈ An. Therefore An is closed.
Now we will prove that each C[0, 1] \ An is a dense set. Note that the set of all con-

tinuous piecewise linear functions is dense in C[0, 1]. Let ϵ > 0. Then for any f ∈ C[0, 1],
there is a continuous piecewise linear function h ∈ B(f , ϵ2 ). We will show that the open
ballB(h, ϵ2 ) intersectsC[0, 1]\An nontrivially. Thiswill jointly imply thatB(f , ϵ) intersects
C[0, 1] \ An nontrivially.
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Let L be the maximum slope of the line segment of the piecewise linear function h.
Let l be a real number such that

l ϵ
2
> L + n. (5.27)

Let g(x) = h(x) + ϵ
2ψ(lx), where ψ is the triangular sawtooth function. Note that

d∞(g, h) =
ϵ
4
<
ϵ
2
.

This implies that g ∈ B(h, ϵ2 ). Note that the slope of h is at most L and
ϵ
2ψ(lx) has the slope

ϵ
2 l. By equation (5.27) we have that the right derivative of g is greater than n. Therefore
g ∉ An. In other words, g ∈ C[0, 1] \ An. This implies that C[0, 1] \ An is dense. Since
C[0, 1] \ An is open and dense, by the Baire category theorem we get that

⋂(C[0, 1] \ An) = C[0, 1] \ ⋃An = C[0, 1] \ A

is dense.

Exercises

5.1. First of all, complete whatever is left for you as exercises.
5.2. Show that a complete set in a metric space is closed.
5.3. Can you relax some condition in Cantor’s intersection theorem?
5.4. Let (an) and (bn) increasing and decreasing real sequences, respectively, such that

an ≤ bn. Show that (an) and (bn) are convergent.
5.5. Let (xn) be a sequence in a metric space (X , d) such that limn→∞ d(xn+1, xn) = 0.

Can you conclude that (xn) is a Cauchy sequence?
5.6. For a real sequence (xn), define

lim sup(xn) = inf{sup{xm | m ≥ n} | n ∈ ℕ}

and

lim inf(xn) = sup{inf{xm | m ≥ n} | n ∈ ℕ}.

Show that if (xn) is a bounded real sequence, then there exists a subsequence of
(xn) that converges to lim sup(xn). Also, show that there exists a subsequence of
(xn) that converges to lim inf(xn).

5.7. Show that if (xn) is a real sequence of positive terms, then

lim inf
xn+1
xn
≤ lim inf(xn)

1
n ≤ lim sup(xn)

1
n ≤ lim inf

xn+1
xn
.
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5.8. Let V be a normed space. Suppose thatW is a closed subspace of V such thatW
and V/W is complete. Show that V is complete.

5.9. Let Tm : ℓp → ℓp be defined as Tm((xn)) = (
xn
nm ), where m ∈ ℕ. Show that ‖Tm‖

converges to 0.
5.10. Let Tm : ℓp → ℓp be defined as

Tm((x1, x2, . . . )) = (0, 0, . . . , xm+1, xm+2, . . . ).

Show that Tm((xn))→ 0 but ‖Tm‖ ↛ 0.
5.11. Let V be a separable Banach space. Show that there exists a surjective continuous

linear transformation from ℓ1 to V .
5.12. Let V be a normed space. Let (xn) be a sequence in V such that ∑∞n=1 |f (xn)| con-

verges for all linear functionals f . Show that

sup{
∞
∑
n=1

󵄨󵄨󵄨󵄨f (xn)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
‖f ‖ ≤ 1}

is a finite real number.
5.13. Let T : V → W be a continuous linear transformation that is not surjective, where

V is a Banach space, and W is a normed space. Show that if T(V ) is dense in W ,
then it is of first category.

5.14. Let d1 and d2 be two Lipschitz equivalent metrics on X . Let ̂X1 and ̂X2 be comple-
tions of (X , d1) and (X , d2), respectively. Show that there exist unique continuous
maps f : ̂X1 → ̂X2 and g : ̂X2 → ̂X1 such that

where i1 and i2 are isometric embeddings.
5.15. Let A and B be sets in complete metric spaces X and Y , respectively. Let f : A→ B

be a homeomorphism. Show that there existGδ-sets C andD such thatA ⊆ C ⊆ ClA
and B ⊆ D ⊆ ClB and a homeomorphism ̃f : C → D such that ̃f |A= f .



6 Compact metric spaces

In this chapter, we study an important class of metric spaces called compact metric
spaces. We will see that a compact metric space can be embedded in the Hilbert cube as
a closed set. Also, we show that every compact metric space is a continuous image of the
Cantor set.

6.1 Compactness

Let X be a metric space, and let A be a set in X . Then a family

𝒰 = {Uα | α ∈ 𝒜,where𝒜 is an indexing set}

of open sets of X is called an open cover of A if

A ⊆ ⋃
α∈𝒜

Uα.

Throughout this chapter,𝒜 will denote an indexing set.
Let 𝒰 be an open cover of A. Then a subfamily 𝒱 of 𝒰 is called a subcover of 𝒰 if 𝒱

is itself an open cover of A.

Example 6.1.1. Consider the real line ℝ. Let r > 0 be a fixed real number. The family

{(x − r, x + r) | x ∈ ℝ}

is an open cover of ℝ. Note that the family

{(x − r, x + r) | x ∈ ℚ}

is a subcover of the above open cover.

Example 6.1.2. The family

𝒰 = {(n, n + 1) | n ∈ ℤ}

is not an open cover of ℝ as⋃n∈ℤ(n, n + 1) = ℝ \ℤ.

Example 6.1.3. The family

𝒰 = {(n − 1, n + 1) | n ∈ ℤ}

is an open cover of ℝ. The only subcover of 𝒰 is 𝒰 itself.

Definition 6.1.4. A set A in a metric space X is called a compact set if every open cover
of A has a finite subcover.

https://doi.org/10.1515/9783111636085-006
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In other words, if A is compact and

𝒰 = {Uα | α ∈ 𝒜}

is an open cover of A, then it has a subfamily

{Uα1 , . . . ,Uαn }

of 𝒰 such that A ⊆ ⋃ni=1 Uαi . A metric space X is called a compact metric space if X is a
compact set of X .

Example 6.1.5. The real line ℝ is not compact. Consider the open cover

𝒰 = {(−n, n) | n ∈ ℕ}

of ℝ. On the contrary, suppose that it has a finite subcover

𝒱 = {(−n1, n1), . . . , (−nl , nl)}.

Let k = max{n1, . . . , nl}. Then

ℝ =
l
⋃
i=1
(−ni, ni) = (−k, k),

a contradiction.

Example 6.1.6. Consider the set

A = { 1
n
󵄨󵄨󵄨󵄨󵄨󵄨 n ∈ ℕ} ∪ {0}.

Let

𝒰 = {Uα | α ∈ 𝒜}

be an open cover of A. Then 0 ∈ Uβ for some β ∈ 𝒜. Since Uβ is open, there is δ > 0 such
that (−δ, δ) ⊆ Uβ. By the Archimedean property there is k ∈ ℕ such that

1
k < δ. Then for

all n ≥ k,

1
n
∈ (−δ, δ) ⊆ Uβ.

Let 1
i ∈ Uαi for 1 ≤ i ≤ k − 1. Then

Uα1 , . . . ,Uαk−1 ,Uβ
covers A. This shows that A is compact in ℝ.
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Example 6.1.7. Let X be a discrete metric space. Then

{{x} | x ∈ X}

is an open cover that does not have a nontrival subcover. We can observe that X is com-
pact if and only if X is finite.

Proposition 6.1.8. A compact set in a metric space is a closed set.

Proof. Let A be a compact set in a metric space X . We will prove that X \ A is open.
Let x ∈ X \ A. Let a ∈ A. Then a ̸= x. Then there are open balls B(x, ra) and B(a, sa)

such that

B(x, ra) ∩ B(a, sa) = 0.

Note that the family

𝒰 = {B(a, sa) | a ∈ A}

is an open cover of A. Since A is compact, there is a finite subcover

{B(a1, sa1 ), . . . ,B(an, san )}

of 𝒰 . Let U = ⋃ni=1 B(ai, sai ). We can observe that U is open and A ⊆ U .
Let V = ⋂ni=1 B(x, rai ). Then V is open, and x ∈ V . We claim thatU and V are disjoint.
Note that for each 1 ≤ i ≤ n,

B(x, rai ) ∩ B(ai, sai ) = 0.

This implies that B(ai, sai )∩V = 0 for each 1 ≤ i ≤ n. This shows thatU ∩V = 0. Therefore

x ∈ V ⊆ X \ U ⊆ X \ A.

This implies that x in an interior point of X \A. Since x ∈ X \A is arbitrary, X \A is open.
Hence A is closed in X .

Proposition 6.1.9. A closed set in a compact metric space is a compact set.

Proof. Let F be a closed set in a compact metric space X . Let

𝒰 = {Uα | α ∈ 𝒜}

be an open cover of F . Consider the set 𝒱 = 𝒰 ∪ {X \ F}. Then 𝒱 is an open cover of X .
Since X is compact, 𝒱 has a finite subcover

𝒲 = {Uα1 , . . . ,Uαn ,X \ F}.
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Note that

F ⊆
n
⋃
i=1

Uαi .

This shows that F is compact.

Proposition 6.1.10. The continuous image of a compact set is compact.

Proof. Let f be a continuous map from a metric space X to a metric space Y . Let A be a
compact set in X . We claim that f (A) is compact in Y . Let

𝒰 = {Uα | α ∈ 𝒜}

be an open cover of f (A). Since f is continuous, f −1(Uα) is open in X . Since

f (A) ⊆ ⋃
α∈𝒜

Uα,

we have

A ⊆ f −1(f (A))

⊆ f −1(⋃
α∈𝒜

Uα)

= ⋃
α∈𝒜

f −1(Uα).

This implies that

{f −1(Uα) | α ∈ 𝒜}

is an open cover of A.
Since A is compact, it has a finite subcover

{f −1(Uα1 ), . . . , f
−1(Uαn )}.

Then

f (A) ⊆ f(
n
⋃
i=1

f −1(Uαi ))

⊆
n
⋃
i=1

Uαi .

This shows that f (A) is compact in Y .
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Corollary 6.1.11. Let X and Y be homeomorphic metric spaces, and let X be a compact
metric space. Then Y is a compact metric space.

Corollary 6.1.12. Let f be a continuous map from a metric space X to a metric space Y .
Let X be compact. If F is a closed set in X, then f (F) is a closed set in Y .

Proposition 6.1.13. Let X and Y be metric spaces with compact X. Let f : X → Y be a
bijective continuous map. Then f is a homeomorphism.

Proof. By Corollary 6.1.12 we observe that f is a closed map. Hence f is a homeomor-
phism.

Proposition 6.1.14. A compact metric space is bounded.

Proof. Let X be a compact metric space. Let x ∈ X . Then the family

{B(x, n) | n ∈ ℕ}

is an open cover of X . Since X is compact, it has a finite subcover

{B(x, n1), . . . ,B(x, nl)}.

Let k = max{n1, . . . , nl}. Then

X =
l
⋃
i=1

B(x, ni) = B(x, k).

Hence X is bounded.

Proposition 6.1.15. Let A be a compact set in a metric space X, and let f : A → ℝ be
continuous. Then for all x ∈ A, there exist a, b ∈ A such that

f (a) ≤ f (x) ≤ f (b).

Proof. Since A is compact, f (A) is compact in ℝ. By Proposition 6.1.14 it is bounded. Let

m = inf{f (x) | x ∈ A} and M = sup{f (x) | x ∈ A}.

We claim that there is b ∈ A such that f (b) = M . On the contrary, suppose that f (x) < b
for all x ∈ A. Consider the map g : A → ℝ defined by g(x) = 1

M−f (x) . Note that g is
continuous but not a bounded map. This is a contradiction.

Similarly, there is a ∈ A such that f (a) = m. Hence

f (a) ≤ f (x) ≤ f (b).
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Let A be a set in a metric space X , and let ϵ > 0. We define the set

B(A, ϵ) = {z ∈ X | d(z,A) < ϵ}.

Proposition 6.1.16. Let A be a compact set in a metric space X, and let U be an open set
in X such that A ⊆ U. Then there is ϵ > 0 such that B(A, ϵ) ⊆ U.

Proof. Let F = X \ U . Define the map f : X → ℝ by f (x) = d(x, F). Then f is continuous.
Note that f (x) > 0 for all x ∈ U . In particular, f (x) > 0 for all x ∈ A. By Proposition 6.1.15
there is a ∈ A such that f (a) ≤ f (x) for all x ∈ A. Let ϵ = f (a) > 0. For x ∈ A, we have

f (a) ≤ f (x) = d(x, F) ≤ d(x, y), where y ∈ F .

This implies that d(x, y) ≥ ϵ for all x ∈ A and y ∈ F . In other words, if d(x, y) < ϵ for
x ∈ A, then y ∈ U . This implies that

B(A, ϵ) = {z ∈ X | d(z,A) < ϵ} ⊆ U .

Theorem 6.1.17 (Heine–Borel theorem). Let a, b ∈ ℝ. Then the closed interval [a, b] is
compact in ℝ.

Proof. If b ≤ a, then [a, b] is at most singleton. Therefore it is compact. Assume that
a < b. By Corollary 6.1.11 it is sufficient to show that [0, 1] is compact in ℝ. Let

𝒰 = {Uα | α ∈ 𝒜}

be an open cover of [0, 1]. Consider the set

Y = {x ∈ [0, 1] | [0, x] is contained in a union of finitely many members of 𝒰}.

Note that 0 ∈ Uβ for some β ∈ 𝒜. Then [0, 0] = {0} ⊆ Uβ. This implies that Y ̸= 0.
Observe that the set Y is bounded above by 1. By the least upper bound property of ℝ
the supremum of Y exists in ℝ. Let l = sup Y . Clearly, l ∈ [0, 1]. We claim that l = 1. This
will prove that [0, 1] is compact.

On the contrary, suppose that l < 1. Consider an open set Uγ ∈ 𝒰 such that l ∈ Uγ.
Since Uγ is open, there is δ > 0 such that (l − δ, l + δ) ⊆ Uγ with l + δ ∈ [0, 1]. Since l − δ
is not an upper bound of Y , there is y ∈ Y such that l − δ < y ≤ l. Let

Uα1 , . . . ,Uαn

be members of 𝒰 such that

[0, y] ⊆
n
⋃
i=1

Uαi .

Then
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[0, l + δ] = [0, y] ∪ [y, l + δ] ⊆
n
⋃
i=1

Uαi ∪ Uγ.

This implies that l + δ ∈ Y . This is a contradiction since l is the supremum of Y . Hence
l = 1.

Let a1, . . . , an, b1, . . . , bn be real numbers such that ai ≤ bi, 1 ≤ i ≤ n. Consider the
n-dimensional cuboid

Cn = [a1, b1] × ⋅ ⋅ ⋅ × [an, bn].

We can observe that Cn is closed in ℝ
n.

Theorem 6.1.18. An n-dimensional cuboid is compact in ℝn.

Proof. The proof is by induction on n. By the Heine–Borel theorem the result is true for
n = 1. Suppose that every (n − 1)-dimensional cuboid is compact in ℝn. Let

Cn = [a1, b1] × ⋅ ⋅ ⋅ × [an, bn].

Consider the nth projection πn : ℝ
n → ℝ by πn(x1, . . . , xn) = xn. Let v ∈ [an, bn]. Consider

the set

C(v) = {x ∈ Cn | πn(x) = v}
= [a1, b1] × [an−1, bn−1] × ⋅ ⋅ ⋅ × {v}.

Since C(v) is homeomorphic to Cn−1, by induction hypothesis C(v) is compact for all v ∈
[an, bn].

Let

𝒰 = {Uα | α ∈ 𝒜}

be an open cover of Cn. Note that 𝒰 is an open cover of C(v) for all v ∈ [an, bn]. Since C(v)
is compact, there is a finite subcover 𝒰v of 𝒰 such that

C(v) ⊆ ⋃
U∈𝒰v

U .

Let V (v) = ⋃U∈𝒰v
U . Then C(v) ⊆ V (v). By Proposition 6.1.16 there is ϵv > 0 such that

B(C(v), ϵv) ⊆ V (v). Note that for z ∈ Cn and y ∈ C(v), we have |πn(z) − v| ≤ d(z, y). Then

{z ∈ Cn |
󵄨󵄨󵄨󵄨πn(z) − v

󵄨󵄨󵄨󵄨 < ϵv} = {z ∈ Cn | v − ϵv < πn(z) < v + ϵv}
⊆ V (v).

Note that {(v − ϵv, v + ϵv) | v ∈ [an, bn]} is an open cover of [an, bn]. Since [an, bn] is
compact, it has a finite subcover
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{(v1 − ϵv1 , v1 + ϵv1 ), . . . , (vk − ϵvk , vk + ϵvk )}

such that

[an, bn] ⊆
k
⋃
i=1
(vi − ϵvi , vi + ϵvi ).

Note that

Cn ⊆
k
⋃
i=1

V (vi).

This shows that Cn is compact.

Theorem 6.1.19. A set A in ℝn is compact if and only if it is closed and bounded.

Proof. A compact set in a metric space is closed and bounded. Conversely, suppose
that A is a closed and bounded set in ℝn. Since A is bounded, A is contained in some
n-dimensional cuboid Cn. Since Cn is compact and A is closed, A is compact.

We have seen that there are several norms on a normed space. We are interested
how these norms are related. We have observed that on a normed space the Lipschitz
equivalence and topological equivalence coincide. Therefore wewill shortly say “equiv-
alent” for “Lipschitz equivalent” or “topological equivalent”. Let us focus on the finite-
dimensional normed spaces.

Theorem 6.1.20. Any two norms on a finite-dimensional vector space are equivalent.

Proof. Let V be a finite-dimensional vector space over 𝔽, where 𝔽 = ℝ or 𝔽 = ℂ. Let ‖ ⋅ ‖
be a norm on V . Let {v1, . . . , vn} be a basis of V . Then given x ∈ V , x = x1v1 + ⋅ ⋅ ⋅ + xnvn,
where xi ∈ 𝔽. Define ‖ ⋅ ‖2 : V → ℝ by

‖x‖2 = (
n
∑
i=1
|xi|

2)

1
2

.

We can check that ‖ ⋅ ‖2 is a norm on V . We will show that ‖ ⋅ ‖ is equivalent to ‖ ⋅ ‖2. Let
M = (∑ni=1 ‖vi‖

2)
1
2 . Now

‖x‖ =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

n
∑
i=1

xivi
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
n
∑
i=1
|xi|‖vi‖

≤ (
n
∑
i=1
|xi|

2)

1
2

(
n
∑
i=1
‖vi‖

2)

1
2

(by the Cauchy–Schwarz inequality)

= M‖x‖2.
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Let us identify V isometrically with 𝔽n. Define the map f : V → ℝ by

f (x) = ‖x‖ =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

n
∑
i=1

xivi
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
.

Using the sequential criterion, we can check that f is continuous with the usual metric
on 𝔽n. Let

S = {x ∈ V | ‖x‖2 = 1}

= {(x1, . . . , xn) ∈ 𝔽
n | |x1|

2 + ⋅ ⋅ ⋅ + |xn|
2 = 1}.

If𝔽 = ℝ, then S can be identifiedwith the unit sphere inℝn. If𝔽 = ℂ, then S can be iden-
tified with the unit sphere in ℝ2n. By Theorem 6.1.19, S is compact. By Proposition 6.1.15
there is a = (a1, . . . , an) ∈ S such that f (a) ≤ f (x) for all x ∈ S. Letm = f (a). Suppose that
m = 0. Then

f (a) =
󵄩󵄩󵄩󵄩󵄩󵄩∑ aivi
󵄩󵄩󵄩󵄩󵄩󵄩 = 0,

and thus ∑ aivi = 0. This implies that ai = 0 for all i, a contradiction. Hencem > 0.
Let y ∈ V be such that y ̸= 0. Then ‖ y

‖y‖2
‖2 = 1. This implies that

y
‖y‖2
∈ S. Then

m = f (a) ≤ f( y
‖y‖2
) =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
y
‖y‖2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
.

Therefore

m‖y‖2 ≤ ‖y‖. (6.1)

If y = 0, then inequality (6.1) is trivially satisfied. Therefore m‖x‖2 ≤ ‖x‖ for all x ∈ 𝔽
n.

Thus we have

m‖x‖2 ≤ ‖x‖ ≤ M‖x‖2.

Hence ‖ ⋅ ‖ is equivalent to ‖ ⋅ ‖2. Since equivalence of norms is an equivalence relation,
any two norms on V are equivalent.

Now there is a natural question whether there are inequivalent norms on an
infinite-dimensional normed space. If there are such norms, then how many inequiv-
alent norms are there. The following result answers this question. Its proof uses some
cardinal arithmetic. If the reader is not aware of this, then he or she may leave the
proof with the understanding that there are rather many inequivalent norms on an
infinite-dimensional normed space.

Theorem 6.1.21 (Miyeon Kwon). If V is infinite dimensional, then the number of inequiv-
alent norms on V is 2dim(V ).
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Proof. Let {vα | α ∈ 𝒜} be a basis of V . Since 𝒜 is infinite, the set 𝒜 ×ℕ is in bijection
with𝒜. Without loss of generality, we can index the elements of a basis with𝒜 ×ℕ.

Suppose that {vαn | (α, n) ∈ 𝒜 ×ℕ} is a basis of V . Let x ∈ V . Then

x = ∑
(α,n)∈𝒜×ℕ

xαnvαn,

where the sum is finite. For each subset ℐ of𝒜, define the norm on V by

‖x‖ℐ =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∑

(α,n)∈𝒜×ℕ
xαnvαn
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℐ

= ∑
(α,n)∈ℐ×ℕ

1
n
|xαn| + ∑

(α,n)∈(𝒜\ℐ)×ℕ
|xαn|.

Suppose that ℐ and 𝒥 are distinct subsets of 𝒜. Let α ∈ ℐ \ 𝒥 . Then we can check that
‖vαn‖ℐ → 0 and ‖vαn‖𝒥 → 1 as n → ∞. This implies that ‖ ‖ℐ is not equivalent to ‖ ‖𝒥 .
Therefore the number of inequivalent norms on V is at least the number of subsets of
𝒜, that is, 2dim(V ).

First, suppose that 𝔽 = ℝ. For a basis ℬ of V , consider the vector space T over the
fieldℚ of rationals. Then

T = {x1v1 + ⋅ ⋅ ⋅ + xnvn | xi ∈ ℚ, vi ∈ ℬ, n ∈ ℕ}.

Since ℚ is dense in the real line, each real number is a limit of some sequence in ℚ.
Also, since a norm is a continuous map, each norm on V is completely determined by its
values in T . This implies that the number of norms on V is at most the number of maps
from T to ℝ. Let c be the cardinality of ℝ. Then the number of maps from T to ℝ is

c|T | = (2ℵ0)|T |

= (2ℵ0)|ℬ| as |ℬ| = |T |

= 2ℵ0|ℬ|

= 2|ℬ|

= 2dim(V ).

Thus the number of inequivalent norms on V is 2dim(V ).
If 𝔽 = ℂ, then we consider T as a vector space over the fieldℚ + iℚ, and the rest of

the proof is similar.

We observed above the first deviation from a finite-dimensional normed space to
an infinite-dimensional normed space in terms of equivalence of norms. Let us see the
second deviation. Suppose that V is a finite-dimensional normed space over 𝔽. We can
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observe that the unit sphere in V is compact. We will show that the compactness of the
unit sphere in V implies that V is finite dimensional. First, we observe the following:

Theorem 6.1.22. Let V be a normed space, and let W be a proper closed subspace of V .
Let a be a real number such that 0 < a < 1. Then there is xa ∈ V such that ‖xa‖ = 1 and
‖xa − y‖ > a for all y ∈ W.

Proof. Choose a point x ∈ V \W . SinceW is closed,

d = d(x,W ) = inf{‖x − w‖ | w ∈ W} > 0.

Since 0 < a < 1, d < d
a . Then there isw ∈ W such that ‖x−w‖ < d

a . Let xa =
x−w
‖x−w‖ . Clearly,

‖xa‖ = 1. For any y ∈ W , we have

‖xa − y‖ =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
x − w
‖x − w‖

− y
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
1
‖x − w‖

󵄩󵄩󵄩󵄩x − (w + ‖x − w‖y)
󵄩󵄩󵄩󵄩

>
a
d
d

= a.

Nowwe prove the following characterization of a finite-dimensional normed space.
To prove it, we need that if a set A is compact in X , then every sequence in A has a
convergent subsequence. We will prove this fact later.

Theorem 6.1.23. A normed space V is finite dimensional if and only if the unit sphere
S = {x ∈ V | ‖x‖ = 1} is compact.

Proof. If V is finite dimensional, then we can easily prove that S is compact in V . To
prove the converse, suppose that V is an infinite-dimensional normed space.

Choose x1 ∈ S. Since V is infinite dimensional, the subspace ⟨x1⟩ generated by x1 is
not V . Since ⟨x1⟩ is finite dimensional, ⟨x1⟩ is closed in V . Let a be a fixed real number
such that 0 < a < 1. By Theorem 6.1.22 there is x2 ∈ S such that ‖x2 − y‖ > a for all
y ∈ ⟨x1⟩. Again, ⟨x1, x2⟩ ̸= V . By Theorem 6.1.22 there is x3 ∈ S such that ‖x3 − y‖ > a
for all y ∈ ⟨x1, x2⟩. In this way, we get a sequence (xn) in S such that ‖xn − xm‖ > a for
n ̸= m. This sequence does not have a convergent subsequence. This shows that S is not
compact.

By the same argument and the same sequence (xn) we can prove that a normed
space V is finite dimensional if and only if the closed unit ball D = {x ∈ V | ‖x‖ ≤ 1} is
compact.

Let us see one more characterization of a finite-dimensional normed space.

Theorem 6.1.24. A normed space V is finite dimensional if and only if every linear func-
tional f : V → 𝔽 is continuous.
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Proof. Suppose that V is a finite-dimensional normed space with dim V = n. Let
{v1, . . . , vn} be a basis of V . Then every x ∈ V can be uniquely written as x = ∑ni=1 xivi,
where xi ∈ 𝔽. Since V is finite dimensional, it is sufficient to consider the norm ‖ ⋅ ‖1 on
V defined by ‖x‖1 = ∑

n
i=1 |xi|.

Let f : V → 𝔽 be a linear functional. LetM = max{|f (v1)|, . . . , |f (vn)|}. Then

󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

n
∑
i=1

xif (vi)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
n
∑
i=1
|xi|
󵄨󵄨󵄨󵄨f (vi)
󵄨󵄨󵄨󵄨

≤ M
n
∑
i=1
|xi|

= M‖x‖1.

Therefore f is continuous.
To prove the converse, suppose thatV is an infinite-dimensional normed space. Con-

sider a linearly independent set {vi | i ∈ ℕ} in V . Without loss of generality, we can
assume that ‖vi‖ = 1 for all i ∈ ℕ. Extend this linearly independent set to a basis

ℬ = {vi | i ∈ ℕ} ∪ {wα | α ∈ 𝒜}

of V , whereℕ∩𝒜 = 0. Define the linear functional f : V → ℝ by f (vi) = i and f (wα) = 0
for all i ∈ ℕ and α ∈ 𝒜. We claim that f is discontinuous. On the contrary, suppose
that f is continuous. Then |f (vi)| ≤ ‖f ‖ ‖vi‖. This implies that ‖f ‖ ≥ i for all i ∈ ℕ, a
contradiction.

By Theorems 6.1.23, 6.1.24, and 3.1.34 we get the following:

Theorem 6.1.25. Let V be a normed space V. Then following statements are equivalent:
(i) V is finite dimensional;
(ii) The unit sphere S = {x ∈ V | ‖x‖ = 1} is compact;
(iii) The closed unit ball D = {x ∈ V | ‖x‖ ≤ 1} is compact;
(iv) Every linear functional f : V → 𝔽 is continuous;
(v) Every subspace of V is closed.

6.2 Equivalence of compactness

In this section, we study some properties of a metric space, which are equivalent to the
compactness.

Definition 6.2.1. Ametric space X is said to satisfy the Bolzano–Weierstrass property if
every infinite set in X has a limit point.
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Proposition 6.2.2. Let X be a compact metric space. Then X satisfies the Bolzano–
Weierstrass property.

Proof. On the contrary, suppose that X does not satisfy the Bolzano–Weierstrass prop-
erty. Let A be an infinite set in X that has no limit point in X . Then A is closed. Therefore
A is compact.

Let a ∈ A. Since a is not a limit point of A, there is an open ball B(a, ra) that does not
contain any other point of A. Note that the family

{B(a, ra) | a ∈ A}

is an open cover of A. Since A is compact, it has a finite subcover

{B(a1, ra1 ), . . . ,B(an, ran )}

such that

A ⊆
n
⋃
i=1

B(ai, rai ).

Since each open ball B(ai, rai ) contains only one point of A, namely ai, A is a finite set, a
contradiction.

Definition 6.2.3. Ametric space X is called sequentially compact if every sequence in X
has a convergent subsequence.

Proposition 6.2.4. Let X be a metric space that satisfies the Bolzano–Weierstrass prop-
erty. Then X is sequentially compact.

Proof. Consider a sequence (xn) in X . Let A be the set of terms of the sequence (xn).
First, suppose that A is a finite set. Then there is term of the sequence (xn), say x,

which is repeated infinitely many times. Then the sequence (xn) has a constant subse-
quence (x). Clearly, the subsequence (x) converges to x.

Now suppose thatA is an infinite set. SinceX satisfies the Bolzano–Weierstrass prop-
erty, A has a limit point in X . Let x ∈ X be a limit point of A. Choose a term xn1 in the
open ball B(x, 1). Next, choose a term xn2 in the open ball B(x,

1
2 ), where n2 > n1. In this

way, we obtain a subsequence (xnk ) of the sequence (xn), where xnk ∈ B(x,
1
k ). We can

easily observe that xnk → x.

Proposition 6.2.5. Let X be a sequentially compact metric space. Let 𝒰 be an open cover
of X by open balls. Then there is n ∈ ℕ such that every open ball of diameter less than 1

n
is contained in some member of 𝒰 .

Proof. On the contrary, suppose for each n ∈ ℕ, there is an open ball B(xn,
1
n ) that is not

contained in any member of 𝒰 . This gives a sequence (xn) in X . Since X is sequentially
compact, (xn) has a convergent subsequence (xni ). Suppose xni → x in X .
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Since 𝒰 covers X , there is an open ball B(y, r) in 𝒰 containing x. Let

s = min{d(x, y), r − d(x, y)}.

Then B(x, s) ⊆ B(y, r). Since xni → x, there is k ∈ ℕ such that

j ≥ k ⇒ d(xnj , x) <
s
2
.

Choose ni ≥ nk such that
1
ni
< s

2 . Since ni ≥ nk , d(xni , x) <
s
2 . We claim that B(xni ,

1
ni
) ⊆

B(x, s). For this, let z ∈ B(xni ,
1
ni
). Then d(z, xni ) <

1
ni
. Now

d(z, x) ≤ d(z, xni ) + d(xni , x)

<
1
ni
+
s
2

<
s
2
+
s
2

= s.

This implies that z ∈ B(x, s), and thus

B(xni ,
1
ni
) ⊆ B(x, s) ⊆ B(y, r).

This is a contradiction.

Let X be a sequentially compact metric space, and let 𝒰 be an open cover of X . By
Proposition 6.2.5 there is a positive real number δ such that any set in X of diameter
less than δ is contained in some member of 𝒰 . Such a positive real number δ is called a
Lebesgue number for the open cover 𝒰 . Note that a Lebesgue number is not unique for
an open cover 𝒰 . Any positive real number less than δ is also a Lebesgue number for 𝒰 .

Proposition 6.2.6. Every continuous map from a compact metric space is uniformly con-
tinuous.

Proof. Let X and Y be metric spaces with compact X . Let f : X → Y be a continuous
map. Let ϵ > 0. Then the family

𝒰 = {B(y, ϵ
2
)
󵄨󵄨󵄨󵄨󵄨󵄨 y ∈ Y}

is an open cover of Y . Since f is continuous, the family

𝒱 = {f −1(B(y, ϵ
2
))
󵄨󵄨󵄨󵄨󵄨󵄨 y ∈ Y}
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is an open cover of X . Since X is compact, X is sequentially compact. Let δ > 0 be a
Lebesgue number for 𝒱 . Let x1, x2 ∈ X be such that d(x1, x2) < δ. In other words, the
diameter of the set {x1, x2} is less than δ. Choose a member f

−1(B(y, ϵ2 )) of 𝒱 containing
x1 and x2. Then f (x1), f (x2) ∈ B(y,

ϵ
2 ). Now

d(f (x1), f (x2)) ≤ d(f (x1), y) + d(y, f (x2)) < ϵ.

Hence f is uniformly continuous.

Remark 6.2.7. If we carefully observe the proof of Proposition 6.2.6, then we can see
that if a metric space X in which a Lebesgue number exists for every open cover of X ,
then every continuous map on X is uniformly continuous.

Definition 6.2.8. A set A in a metric space X is called totally bounded if for each ϵ > 0,
there are finitely many points x1, . . . , xn such that

A ⊆
n
⋃
i=1

B(xi, ϵ).

A metric space X is called totally bounded if X is a totally bounded set in X .

Example 6.2.9. Consider the open interval (0, 1) in the real line ℝ. Let ϵ > 0. If ϵ ≥ 1,
then (0, 1) ⊆ B(x, ϵ), where x ∈ (0, 1). Let 0 < ϵ < 1. Then there exists n ∈ ℕ such that
1

n+1 < ϵ. Let xi =
1

n+1 , i = 1, . . . , n. We can observe that

(0, 1) ⊆
n
⋃
i=1

B(xi, ϵ).

Therefore (0, 1) is totally bounded.

Proposition 6.2.10. A totally bounded set in a metric space is bounded.

Proof. Let A be a totally bounded set in a metric space X . Then for ϵ = 1, there is a finite
set Y = {x1, . . . , xn} such that

A ⊆
n
⋃
i=1

B(xi, 1).

Let x, y ∈ A. Then x ∈ B(xi, 1) and y ∈ B(xj , 1) for some xi, xj ∈ Y . Now

d(x, y) ≤ d(x, xi) + d(xi, xj) + d(xj , y)

< 2 + diam(Y ).

This shows that A is bounded.
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A bounded set need not be totally bounded. Consider the set of real numbersℝwith
the metric

d(x, y) = min{1, |x − y|}.

Thenℝ is bounded but not totally bounded. Also, an infinite set with the discrete metric
is bounded but not totally bounded, as any open ball of radius less than 1 is a singleton
set.

Proposition 6.2.11. A sequentially compact metric space is totally bounded.

Proof. Let X be a sequentially compact metric space. On the contrary, suppose that X
is not totally bounded. Then there is ϵ > 0 for which there are no finitely many points
x1, . . . , xn such that

n
⋃
i=1

B(xi, ϵ) ̸= X .

Choose a point x1 ∈ X and consider the open ball B(x1, ϵ). If B(x1, ϵ) = X , then X is
totally bounded, a contradiction. Thus B(x1, ϵ) ̸= X . Choose x2 ∈ X \ B(x1, ϵ). Consider
B(x1, ϵ)∪B(x2, ϵ). Since X is not totally bounded, we inductively get a sequence (xn) such
that d(xn, xm) ≥ ϵ for n ̸= m. We can observe that this sequence (xn) does not have a
convergent subsequence. This is a contradiction.

Proposition 6.2.12. A sequentially compact metric space is compact.

Proof. Let X be a sequentially compact metric space. Let 𝒰 be an open cover of X . Let
δ > be a Lebesgue number for the open cover 𝒰 . Since a sequentially compact metric
space is totally bounded, for δ

3 , there are finitely many points x1, . . . , xn such that

X =
n
⋃
i=1

B(xi,
δ
3
).

Note that diam(B(xi,
δ
3 )) ≤

2δ
3 < δ for all i = 1, . . . , n. Let Ui ∈ 𝒰 be such that B(xi,

δ
3 ) ⊆ Ui

for all i = 1, . . . , n. This implies that

X =
n
⋃
i=1

Ui.

This shows that X is compact.

Proposition 6.2.13. A compact metric space is complete.

Proof. Let X be a compact metric space. Let (xn) be a Cauchy sequence in X . Since a
compact metric space is sequentially compact, (xn) has a convergent subsequence. By
Proposition 5.2.21 X is complete.
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The real line ℝ is complete but not compact. It is natural to ask when a complete
metric space is compact. We have the following:

Proposition 6.2.14. A metric space X is compact if and only if X is complete and totally
bounded.

Proof. We have observed that a sequentially compact metric space is totally bounded
and a compact metric space is complete. Therefore a compact metric space is complete
and totally bounded. Conversely, suppose that X is complete and totally bounded. We
will show that X satisfies the Bolzano–Weierstrass property.

Let A be an infinite set in X . Since X is totally bounded, for each n ∈ ℕ, there is a
finite set Yn in X such that

X = ⋃
x∈Yn

B(x, 1
n
).

Then for n = 1, there is a point x1 ∈ Y1 such that B(x, 1) contains infinitely many points
of A. In other words, A ∩ B(x, 1) is infinite. Since

A ∩ B(x1, 1) ⊆ ⋃
x∈Y2

B(x, 1
2
),

there is a point x2 ∈ Y2 such that

A ∩ B(x1, 1) ∩ B(x2,
1
2
)

is infinite. Inductively, we get xn ∈ Yn such that

A ∩ B(x1, 1) ∩ ⋅ ⋅ ⋅ ∩ B(xn,
1
n
)

is infinite. Let ϵ > 0. Then there is k ∈ ℕ such that 2
k < ϵ. Let m, n ≥ k and a ∈ A ∩

B(xm,
1
m ) ∩ B(xn,

1
n ). Then

d(xm, xn) ≤ d(xm, a) + d(a, xn)

<
1
m
+
1
n

≤
2
k
< ϵ.

This implies that (xn) is a Cauchy sequence. Since X is complete, xn → x in X . Therefore
x is a limit point of A. This shows that X satisfies the Bolzano–Weierstrass property.
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We have observed that every continuous real-valued map from a compact metric
space is bounded.We are interested in ametric spacewith every continuous real-valued
map bounded.

Definition 6.2.15. A metric space X is called pseudocompact if every continuous real-
valued map from X is bounded.

Proposition 6.2.16. Let X be a pseudocompact metric space. Then a Lebesgue number
exists for every open cover of X.

Proof. Let 𝒰 be an open cover of X . If X ∈ 𝒰 , then we are done. Suppose that X ∉ 𝒰 .
Choose a point a ∈ X . Note that d(x, a) = d(x, {a}) for all x ∈ X . By Example 3.1.30 the
map f : X → ℝ defined by f (x) = d(x, a) is continuous. By assumption there is M > 0
such that f (x) ≤ M

2 for all x ∈ X . Let x, y ∈ X . Then

d(x, y) ≤ d(x, a) + d(a, y)

≤
M
2
+
M
2

= M .

We define the map ϕ : X → ℝ by

ϕ(x) = sup{d(x,X \ U) | U ∈ 𝒰}.

Note that

d(x,X \ U) = inf{d(x, y) | y ∈ X \ U} ≤ M .

This implies that ϕ(x) ≤ M for all x ∈ X . For all x, y ∈ X and U ∈ 𝒰 , we have

󵄨󵄨󵄨󵄨d(x,X \ U) − d(y,X \ U)
󵄨󵄨󵄨󵄨 ≤ d(x, y).

Then

d(x,X \ U) ≤ d(y,X \ U) + d(x, y)

≤ ϕ(y) + d(x, y).

This implies that

ϕ(x) ≤ ϕ(y) + d(x, y).

Therefore

ϕ(x) − ϕ(y) ≤ d(x, y).
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We can similarly show that

ϕ(y) − ϕ(x) ≤ d(x, y).

Hence

󵄨󵄨󵄨󵄨ϕ(x) − ϕ(y)
󵄨󵄨󵄨󵄨 ≤ d(x, y).

This shows that ϕ is a continuous map. Note that X \U ̸= 0 for all U ∈ 𝒰 . Let x ∈ X . Then
x ∈ V for some V ∈ 𝒰 . Then

ϕ(x) ≥ d(x,X \ V ) > 0.

Then the map ψ : X → ℝ defined by ψ(x) = 1
ϕ(x) is continuous. By assumption there is

m > 0 such that ψ(x) < m for all x ∈ X or, in other words, 1
m < ϕ(x) for all x ∈ X . We

claim that any δ such that 0 < δ < 1
m is a Lebesgue number.

Let x ∈ X . Since 0 < δ < 1
m , there is U ∈ 𝒰 such that d(x,X \ U) > δ. Let z ∈ B(x, δ).

Then d(z, x) < δ. This implies that z ∈ U . Since z ∈ B(x, δ) is arbitrary, B(x, δ) ⊆ U . This
shows that δ is a Lebesgue number.

Proposition 6.2.17. A pseudocompact metric space is totally bounded.

Proof. Let X be a pseudocompact metric space. On the contrary, suppose that X is not
totally bounded. Then there is ϵ > 0 such that X cannot be written as a union of finitely
many balls of radius ϵ.

Let x1 ∈ X and consider the open ball B(x1, ϵ). Since X is not totally bounded,
B(x1, ϵ) ̸= X . Choose x2 ∈ X \ B(x1, ϵ). Again,

X ̸= B(x1, ϵ) ∪ B(x2, ϵ).

Inductively, we get a sequence (xn) in X such that d(xm, xn) ≥ ϵ for m ̸= n. Let A =
{xn | n ∈ ℕ}. Note that A is closed in X and the subspace metric on A is topologically
equivalent to the discrete metric on A. Then the map f : A → ℝ defined by f (x) = nϵ
is continuous. By Tietze’s extension theorem, f can be extended to a continuous map
̃f : X → ℝ. Observe that ̃f is unbounded, a contradiction.

Proposition 6.2.18. A pseudocompact metric space is compact.

Proof. Let X be a pseudocompact metric space. Let 𝒰 be an open cover of X . Let δ > 0
be a Lebesgue number for 𝒰 . Since X is totally bounded, there are finitely many points
x1, . . . , xn of X such that

X = B(x1, δ) ∪ ⋅ ⋅ ⋅ ∪ B(xn, δ).

Since δ > 0 is a Lebesgue number, there is an open set Ui ∈ 𝒰 such that B(xi, δ) ⊆ Ui for
all 1 ≤ i ≤ n. Then



6.3 Hilbert cube � 207

X = U1 ∪ ⋅ ⋅ ⋅ ∪ Un.

This shows that X is compact.

Definition 6.2.19. Ametric space X is called countably compact if every countable open
cover has a finite subcover.

Clearly, a compact metric space is countably compact.

Proposition 6.2.20. A countably compact metric space is compact.

Proof. Let X be a countably compact metric space. We will show that X satisfies the
Bolzano–Weierstrass property. On the contrary, suppose that there is an infinite set Y in
X that has no limit point. Let A be a countably infinite subset of Y . Then A does not have
limit point in X . This implies that for each x ∈ X , there is an open ball B(x, r) such that

B(x, r) ∩ (A \ {x}) = 0.

Let a ∈ A. Then for every x ∈ X \ (A \ {a}), there is an open ball B(x, r) such that

B(x, r) ∩ (A \ {a}) = 0.

This implies that B(x, r) ⊆ X \ (A \ {a}). Therefore Ua = X \ (A \ {a}) is an open set in X .
Note that for each x ∈ X , there is an open ball around x contained in Ua. This implies
that

𝒰 = {Ua | a ∈ A}

is an open cover of X . Since X is countably infinite, it has a finite subcover

{Ua1 , . . . ,Uan }.

Note that Ua ∩ A = {a} and

A ⊆ Ua1 ∪ ⋅ ⋅ ⋅ ∪ Uan .

This implies that A is finite, a contradiction.

Thus for ametric space, the compactness, Bolzano–Weierstrass property, sequential
compactness, pseudocompactness, and countable compactness are equivalent.

6.3 Hilbert cube

The aim of this section is to show that a compact metric space can be homeomorphically
embedded in the Hilbert cube as a closed set.
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Let I = [0, 1]with themetric of the real line. Consider the product Iℕwith themetric

d(x, y) =
∞
∑
n=1

|xn − yn|
2n

for x = (xn) and y = (yn). The metric space (I
ℕ, d) is called the Hilbert cube.

Let 𝒮 be a collection of open sets in a metric space X such that for every x ∈ U ,
where U is open in X , there are finitely many members S1, . . . , Sn in 𝒮 such that

x ∈
n
⋂
i=1

Si ⊆ U .

Remark 6.3.1. Such a collection𝒮 is called a subbase.Wemay be curious that theremay
be also a notion of a base. It is there, but it is deliberately not defined, although we have
used this notion in this book.

Theorem 6.3.2 (Alexander subbase theorem). Let 𝒮 be a subbase in a metric space X. If
for every open cover 𝒰 ⊆ 𝒮 , there is a finite subcover, then X is compact.

Proof. On the contrary, suppose that X is not compact. Let 𝒱 be an open cover of X that
has no finite subcover. Let 𝒱 bemaximal with respect to this property. Then 𝒮∩𝒱 cannot
cover X , since otherwise by our assumption 𝒮 ∩ 𝒱 ⊆ 𝒮 has a finite subcover. This is a
contradiction as 𝒮 ∩ 𝒱 ⊆ 𝒱 .

LetW be the union of members of 𝒮 ∩ 𝒱 . Let x ∈ X \W . Then there is an open set
U ∈ 𝒱 such that x ∈ U . Since 𝒮 is a subbase, there are finitely many members S1, . . . , Sn
of 𝒮 such that

x ∈
n
⋂
i=1

Si ⊆ U .

We can observe that Si ∉ 𝒮 ∩ 𝒱 ; otherwise, if x is in some Si, then x ∈ W . By the maxi-
mality of 𝒱 the open cover 𝒱 ∪ {Si} has finite subcover for each 1 ≤ i ≤ n, say

{V i
1 , . . . ,V

i
mi
} ∪ {Si}.

This implies that for each 1 ≤ i ≤ n, X \ {Si} is covered by finitely many members of 𝒱 .
Therefore X \ ∩Si and consequently X \ U are covered by finitely many members of 𝒱 .
Since U ∈ 𝒱 , X is covered by finitely many members of 𝒱 . This is a contradiction.

Theorem 6.3.3. The Hilbert cube is compact.

Proof. By Proposition 4.1.6, given x ∈ V withV open in the Hilbert cube, there is an open
set

G = U1 × ⋅ ⋅ ⋅ × Un × I × I × ⋅ ⋅ ⋅
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such that

x ∈ G ⊆ V .

For k ∈ I , let Ik = I × ⋅ ⋅ ⋅ × I (k times). For k ∈ ℕ, a ∈ [0, 1), and b ∈ (0, 1], denote

Lk(a) = I
k−1 × (a, 1] × I × I × ⋅ ⋅ ⋅

and

Uk(b) = I
k−1 × [0, b) × I × I × ⋅ ⋅ ⋅ .

Let 𝒮 be the set of all such Lk(a) and Ul(b). Note that 𝒮 is a subbase. Let 𝒰 be an open
cover contained in 𝒮 . For each k ∈ ℕ, let

ak = inf{a ∈ [0, 1) | Lk(a) ∈ 𝒰}

and

bk = inf{b ∈ (0, 1] | Uk(b) ∈ 𝒰}.

Now we claim that there is m ∈ ℕ such that am < bm. On the contrary, suppose that
an ≥ bn for all n ∈ ℕ. Then

x = (a1, a2, . . . ) ∉ ⋃
U∈𝒰

U .

This is a contradiction. Therefore am < bm for some m ∈ ℕ. Then there are a ∈ [0, 1)
and b ∈ (0, 1] with am ≤ a < b ≤ bm such that Lm(a),Um(b) ∈ 𝒰 . We can observe
that {Lm(a),Um(b)} is a finite subcover of 𝒰 . By the Alexander subbase theorem, I

ℕ is
compact.

Proposition 6.3.4. Let H = {(xn) ∈ ℓ2 | 0 ≤ xn ≤
1
n }. Then H as a metric subspace of ℓ2 is

homeomorphic to the Hilbert cube.

Proof. Let d be the metric on the Hilbert cube. Define the map f : Iℕ → H by f ((xn)) =
( xnn ). We can check that f is bijective. Since the Hilbert cube is compact, to prove that f
is a homeomorphism, it is sufficient to prove that f is continuous.

Let ϵ > 0. Since ∑∞n=1
1
n2 is convergent, there is k ∈ ℕ such that

∞
∑

n=k+1

1
n2
<
ϵ2

2
.

Let δ be a positive real number defined by the equation

k
∑
n=1
(
2n

n
)
2

δ2 = ϵ
2

2
.
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Let x = (xn), a = (an) ∈ I
ℕ be such that

d(x, a) =
∞
∑
n=1

|xn − an|
2n
< δ.

Then for each n ∈ ℕ, we have

|xn − an|
2n
≤

k
∑
n=1

|xn − an|
2n

≤
∞
∑
n=1

|xn − an|
2n

< δ.

Now

󵄩󵄩󵄩󵄩f (x) − f (a)
󵄩󵄩󵄩󵄩
2
2 =
∞
∑
n=1
(
|xn − an|

n
)
2

=
k
∑
n=1
(
|xn − an|

n
)
2

+
∞
∑

n=k+1
(
|xn − an|

n
)
2

<
k
∑
n=1
(
2n

n
)
2

δ2 + ϵ
2

2

=
ϵ2

2
+
ϵ2

2
= ϵ2.

This shows that f is continuous.

Corollary 6.3.5. Let H = {(xn) ∈ ℓ2 | 0 ≤ xn ≤
1
n }. Then H as a metric subspace of ℓ2 is

compact.

Remark 6.3.6. In view of Proposition 6.3.4, we will also call H the Hilbert cube.

Proposition 6.3.7. Every compact metric space is separable.

Proof. Let X be a compact metric space. Note that for each n ∈ ℕ, the family

𝒰n = {B(x,
1
n
)
󵄨󵄨󵄨󵄨󵄨󵄨 x ∈ X}

is an open cover of X . Since X is compact, there is a finite set An in X such that

X = ⋃
x∈An

B(x, 1
n
).
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Let

ℬ = {B(x, 1
n
)
󵄨󵄨󵄨󵄨󵄨󵄨 n ∈ ℕ, x ∈ An}.

Note that ℬ is countable. Let U be an open set, and let x ∈ U . Since U is open, we can
find k ∈ ℕ such that B(x, 1k ) ⊆ U . By the property of subcover there is y ∈ An such that
x ∈ B(y, 1n ). This implies that B(y,

1
n ) ∈ ℬ and

x ∈ B(y, 1
n
) ⊆ U .

Since ℬ is countable, we can renumber ℬ as follows:

ℬ = {Bn | n ∈ ℕ}.

Choose an element xn ∈ Bn and consider the set

D = {xn | n ∈ ℕ}.

We can check that D is dense in X .

Theorem 6.3.8. A separable metric space can be homeomorphically embedded in the
Hilbert cube.

Proof. Let (X , d) be a separable metric space. Without loss of generality, we can assume
that d(x, y) ≤ 1 for all x, y ∈ X ; otherwise,we candefine ametric onX that is topologically
equivalent to the original metric and bounded by 1. Let

A = {xn | n ∈ ℕ}

be a dense set in X . Define the map f : X → H by

f (x) = (d(x, xn)
n
).

Let x, y ∈ X . Then for k ∈ ℕ, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
d(x, xk)

k
−
d(y, xk)

k

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ (
∞
∑
n=1

|d(x, xn) − d(y, xn)|
2

n2
)

1
2

= 󵄩󵄩󵄩󵄩f (x) − f (y)
󵄩󵄩󵄩󵄩2

≤ (
∞
∑
n=1
(
d(x, y)
n
)
2

)

1
2

, (6.2)

where the last inequality holds because of the inequality
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󵄨󵄨󵄨󵄨d(x, z) − d(y, z)
󵄨󵄨󵄨󵄨 ≤ d(x, y).

We first claim that f is injective. Let x, y ∈ X be such that x ̸= y. Since A is dense, there is
xi ∈ A such that

d(x, xi) <
d(x, y)
2
.

Now if d(x, xi) = d(y, xi), then

d(x, y) ≤ d(x, xi) + d(xi, y)
= 2d(x, xi)
< d(x, y).

This is a contradiction. Therefore d(x, xi) ̸= d(y, xi). Now, by inequality (6.2) we have

󵄩󵄩󵄩󵄩f (x) − f (y)
󵄩󵄩󵄩󵄩2 ≥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
d(x, xi) − d(y, xi)

i

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
> 0.

Therefore f (x) ̸= f (y). This shows that f is injective.
Now we claim that f is continuous. Let ϵ > 0 and a ∈ X . Choose N ∈ ℕ such that

∞
∑

n=N+1

1
n2
<
ϵ2

2
.

Let δ = ϵ
√2N

. Let x ∈ X be such that d(x, a) < δ. Then by inequality (6.2) we have

󵄩󵄩󵄩󵄩f (x) − f (a)
󵄩󵄩󵄩󵄩
2
2 =
∞
∑
n=1
(
|d(x, xn) − d(a, xn)|

n
)
2

≤
∞
∑
n=1
(
d(x, a)
n
)
2

=
N
∑
n=1
(
d(x, a)
n
)
2

+
∞
∑

n=N+1
(
d(x, a)
n
)
2

<
N
∑
n=1

d(x, a)2 + ϵ
2

2

<
N
∑
n=1

ϵ2

2N
+
ϵ2

2

= ϵ2.

Therefore f is continuous at a ∈ X . Since a ∈ X is arbitrary, f is continuous.
Finally, we claim that f is an openmap from X to f (X). Let ϵ > 0 and a ∈ X . To prove

that f is open, it is sufficient to prove that the image of an open ball in X is open in f (X).
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Since A is dense, there is xk ∈ A such that d(a, xk) <
ϵ
3 . Let δ =

ϵ
3k . Let f (x) ∈ f (X) be

such that ‖f (x) − f (a)‖2 < δ. By inequality (6.2) we have

󵄨󵄨󵄨󵄨d(a, xk) − d(x, xk)
󵄨󵄨󵄨󵄨 ≤ k
󵄩󵄩󵄩󵄩f (x) − f (a)

󵄩󵄩󵄩󵄩2 <
ϵ
3
.

This implies that

d(x, xk) < d(a, xk) +
ϵ
3
<
2ϵ
3
.

Then

d(x, a) ≤ d(x, xk) + d(xk , a) <
2ϵ
3
+
ϵ
3
= ϵ.

Therefore x ∈ B(a, ϵ). Then f (x) ∈ f (B(a, ϵ)). This implies that

B(f (a), δ) ∩ f (X) ⊆ f (B(a, ϵ)).

Hence f is an openmap from X to f (X). Thus f is a homeomorphism from X to f (X).

Corollary 6.3.9. A compact metric space can be homeomorphically embedded in the
Hilbert cube as a closed subspace.

Remark 6.3.10. Since the cardinality of [0, 1]ℕ is equal to that of [0, 1], we can observe
that if X is a metric space with cardinality strictly greater than that of [0, 1], then X
cannot be a compact metric space.

6.4 Cantor set

For a given closed interval A = [a, b], let Á denote the set after deleting the open middle
third interval of A, that is,

Á = [a, a + 1
3
(b − a)] ∪ [a + 2

3
(b − a), b].

Also, for a given union

B =
n
⋃
i=1

Ai

of finite disjoint closed intervals Ai = [ai, bi], let B́ = ⋃
n
i=1
́Ai.

Consider the interval [0, 1]. We will inductively apply the process of deleting the
open middle third interval. Let

C0 = [0, 1].
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Then define C1 = ́C0, that is,

C1 = [0,
1
3
] ∪ [

2
3
, 1].

Now define C2 = ́C1, that is,

C2 = [0,
1
9
] ∪ [

2
9
,
1
3
] ∪ [

2
3
,
7
9
] ∪ [

8
9
, 1].

WhenCn is defined, defineCn+1 = ́Cn. Note that eachCn is the union of 2
n closed intervals.

Therefore each Cn is closed. Now define

C =
∞
⋂
n=1

Cn.

C0
0 1

C1
0

1
3

2
3 1

C2
0

1
9

2
9

1
3

2
3

7
9

8
9 1

C3
0

1
27

2
27

1
9

2
9

7
27

8
27

1
3

2
3

19
27

20
27

7
9

8
9

25
27

26
27 1

...

Construction of the Cantor set

Consider the set Cwith themetric induced by the usualmetric ofℝ. Themetric space C is
called the Cantor ternary set or simply the Cantor set. Since an arbitrary intersection of
closed sets is closed, C is closed. Also, C is contained in [0, 1], so C is compact. We will say
that x ∈ C is an end point of C if it is an end point of one of the open intervals removed
from Cn to obtain Cn+1.

Proposition 6.4.1. No singleton is open in the Cantor set.

Proof. On the contrary, suppose that there is a point x ∈ C such that {x} is open in the
Cantor set C. Then there is r > 0 such that
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(x − r, x + r) ∩ C = {x}. (6.3)

Choose k ∈ ℕ such that 1
3k < r. Note that x ∈ Ck . Let [a, b] be an interval of Ck such that

x ∈ [a, b]. Then

[a, b] ⊆ (x − r, x + r).

Note that one of the end points y of [a, b] is different from x. Since y ∈ C, we get a
contradiction to equation (6.3).

By Proposition 6.4.1 we observe that the Cantor set is different from the discrete
metric space.

Proposition 6.4.2. For the Cantor set C, D(C) = C.

Proof. Since C is closed, D(C) ⊆ C. Conversely, let x ∈ C. Consider an open ball B(x, r).
Choose n ∈ ℕ such that 1

3n < r. Then B(x, r) intersects Cn, and therefore it intersects C
in a point other than x. Hence x ∈ D(C). This shows that D(C) = C.

By definition the Cantor set C is a subset of [0, 1]. Let us try to find out which points
of [0, 1] are in the Cantor set. We have observed that every element in [0, 1] can be rep-
resented in the base b > 1. Let us take b = 3. Let x ∈ [0, 1]. Then

x = (0.x1x2 ⋅ ⋅ ⋅ xn ⋅ ⋅ ⋅)3.

If x = 0, then xn = 0 for all n ∈ ℕ. Let x > 0. Suppose we have the following situation in
the base 3 representation:

xm = 1 for somem, and xn = 0 for all n > m. (6.4)

Then we can choose xn ∈ {0, 1, 2} as follows to avoid the above situation.
Choose the unique x1 ∈ {0, 1, 2} such that

x1
3
< x ≤ x1 + 1

3
.

Suppose we have obtained xn−1. Choose the unique xn ∈ {0, 1, 2} such that

xn
3n
< x −

n−1
∑
i=1

xi
3i
≤
xn + 1
3n
.

On the contrary, suppose (6.4) holds. Then

x −
m−1
∑
i=1

xi
3i
=

1
3m
.

Now by the construction we have
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1
3m
< x −

m−1
∑
i=1

xi
3i
=

1
3m
,

a contradiction.
Now suppose we have the following situation in the base 3 representation:

xm = 1 for somem, and xn = 2 for all n > m. (6.5)

Then we can redefine xn for n ≥ m as follows. Take xm = 2 and xn = 0 for all n > m. We
claim that for all n ∈ ℕ, x ∈ Cn if and only if all x1, x2, . . . , xn are different from 1. The
proof of the claim is by induction on n.

Let x ∈ [0, 13 ] ∪ [
2
3 , 1]. Then either x ∈ [0,

1
3 ] or x ∈ [

2
3 , 1]. Then

x = (0.0x2x3 ⋅ ⋅ ⋅)3 or x = (0.2x2x3 ⋅ ⋅ ⋅)3.

This shows that the statement is true for n = 1. Since the middle one third of the subin-
tervals is removed in each step, we can similarly observe that the statement holds in-
ductively. Thus we have shown that x is in the Cantor set if and only if each xn in the
base 3 representation is either 0 or 2. This defines the bijective map κ : C → {0, 2}ℕ by

κ(x) = (0.x1x2 ⋅ ⋅ ⋅)3,

where xn ∈ {0, 2}. Consider {0, 2} with the discrete metric and equip {0, 2}ℕ with the
metric defined by

d(x, y) =
∞
∑
i=1

di(xi, yi)
2i
.

We claim that κ is a homeomorphism. To prove this, we will prove that its inverse map
is a homeomorphism. Let κ′ be the inverse of κ. Then

κ′((0.x1 ⋅ ⋅ ⋅ xn ⋅ ⋅ ⋅)3) =
∞
∑
n=1

xn
3n
.

We first show that κ′ is continuous. Let ϵ > 0. Choose n ∈ ℕ such that 1
3n < ϵ. Let

a = (0.a1a2 ⋅ ⋅ ⋅)3 ∈ {0, 2}
ℕ

be such that

a ∈ {a1} × {a2} × ⋅ ⋅ ⋅ × {an} × {0, 2} × {0, 2} × ⋅ ⋅ ⋅ .

Let

Un = {a1} × {a2} × ⋅ ⋅ ⋅ × {an} × {0, 2} × {0, 2} × ⋅ ⋅ ⋅ .
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Note that Un is an open set in {0, 2}
ℕ. By Proposition 4.1.6, if U is an open set in {0, 2}ℕ

containing a, then

a ∈ Un ⊆ U .

Now for x ∈ Un, we have

󵄨󵄨󵄨󵄨κ
′(x) − κ′(a)󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞
∑
i=n+1

xi − ai
3i

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
∞
∑
i=n+1

2
3i

=
1
3n

< ϵ.

This shows that κ′ is continuous at a. Since a ∈ {0, 2}ℕ is arbitrary, κ′ is continuous.
Note that since {0, 2} is closed in [0, 1], {0, 2}ℕ is closed in the Hilbert cube [0, 1]ℕ.

Since the Hilbert cube is compact, {0, 2}ℕ is compact. Since κ′ is a bijective continuous
map froma compact set, κ′ is a homeomorphism. This shows that the Cantor set is home-
omorphic to the countable product of the discrete metric spaces consisting of two ele-
ments. By Proposition 6.4.1, {0, 2}ℕ is not a discrete metric space. Let us observe a few
more properties of the Cantor set.

Proposition 6.4.3. The Cantor set is homeomorphic to the countable product of the Can-
tor sets.

Proof. From the fact that the cardinality of ℝℕ is equal to that of ℝ we can observe
that the countable product of metric spaces each of which is a countable product of
the sets {0, 2} is a countable product of the sets {0, 2}. This shows that the Cantor set is
homeomorphic to the countable product of the Cantor sets.

Proposition 6.4.4. The closed interval [0, 1] is the continuous image of the Cantor set.

Proof. Let x = (0.x1 ⋅ ⋅ ⋅ xn ⋅ ⋅ ⋅)3 ∈ C. Then each xn ∈ {0, 2}. Define

y = (0.y1 ⋅ ⋅ ⋅ yn ⋅ ⋅ ⋅)2, where yn =
xn
2
.

Define the map f : C → [0, 1] by f (x) = y. Clearly, the map f is surjective as when
we double the binary digits of elements of [0, 1], we get a member of the Cantor set C
represented in the base 3.

Now we prove that f is continuous. Let x, y ∈ C. Suppose that |x − y| < 1
3n . Then x

and y lie in the same nth step subinterval. This implies that the even representations of x
and y in the base 3 coincide through the nth digit. Therefore the binary representations
of f (x) and f (y) coincide through the nth digit. Hence |f (x) − f (y)| < 1

2n .
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Let ϵ > 0. Choose n ∈ ℕ such that 1
2n < ϵ. Also, choose δ > 0 such that δ <

1
3n . Then

|x − y| < δ ⇒ 󵄨󵄨󵄨󵄨f (x) − f (y)
󵄨󵄨󵄨󵄨 < ϵ.

This shows that f is continuous.

Remark 6.4.5. Let us consider the endpoints of the first step, 13 and
2
3 . Then

1
3
= (0.022 ⋅ ⋅ ⋅)3 and 2

3
= (0.200 ⋅ ⋅ ⋅)3.

These elements are mapped to the same element 1
2 as

1
2
= (0.011 ⋅ ⋅ ⋅)2 = (0.100 ⋅ ⋅ ⋅)2.

We have the same situation for endpoints of each step.

0 1
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Continuous surjection from C to [0, 1]

Corollary 6.4.6. The Hilbert cube [0, 1]ℕ is the continuous image of the Cantor set.

Proof. Consider the countable product Cℕ of the Cantor sets C. Let f : C → [0, 1] be a
surjective continuous map. Define the map ϕ : Cℕ → [0, 1]ℕ by

ϕ(x1, x2, . . . ) = (f (x1), f (x2), . . . ).

We can check that ϕ is a surjective continuous map. Since Cℕ is homeomorphic to C, the
Hilbert cube [0, 1]ℕ is the continuous image of the Cantor set.

Let C′ denote the set obtained as the intersection of the sets constructed out of [0, 1]
after removing the middle two-third in each step as we did to obtain the Cantor set C.
By a similar discussion we can show that C′ consists of all the points

x = (0.x1x2 ⋅ ⋅ ⋅ xn ⋅ ⋅ ⋅)6



Exercises � 219

of [0, 1] such that each xn is either 0 or 5. We can easily observe that C′ is homeomorphic
to the Cantor set C.

Theorem 6.4.7. Every closed subset of the Cantor set is the continuous image of the Can-
tor set.

Proof. Let F be a closed subset of the set C′ discussed above. Note that if x, y ∈ C′, then
the midpoint x+y

2 ∉ C
′. Let x ∈ C′. Then there is a unique point yx ∈ F that is closest

to x. This defines the map f : C′ → F by f (x) = yx . We can check that f is surjective and
continuous. Since the Cantor set C is homeomorphic to C′, F is the continuous image of
the Cantor set.

Corollary 6.4.8. Every compact metric space is the continuous image of the Cantor set.

Proof. Let X be a compact metric space. Then X is embedded in the Hilbert cube [0, 1]ℕ.
Without loss of generality, we can suppose that X is a closed set in [0, 1]ℕ. Let ϕ : Cℕ →
[0, 1]ℕ be a surjective continuous map. Then ϕ−1(X) is a closed set in the Cantor set C.
By Theorem 6.4.7, ϕ−1(X) is the continuous image of the Cantor set C. Since X is the
continuous image of ϕ−1(X), X is the continuous image of the Cantor set.

Exercises

6.1. First of all, complete whatever is left for you as exercises.
6.2. Suppose that there is a nonzero linear functional f on a vector space V that is

continuous with respect to all the norms on V . Can you conclude that V is finite
dimensional?

6.3. Show that the finite union of compact sets in a metric space is compact.
6.4. Show that the arbitrary intersection of nonempty compact sets in a metric space

is compact.
6.5. Show that if X is a compact metric space such that each point of X is a limit point,

then X is uncountable.
6.6. Check whether the closed ball D(0, 1) is sequentially compact in ℓ∞ or not.
6.7. Let (X , d) be a compact metric space. Let f : X → X be a map such that

d(f (x), f (y)) < d(x, y) for all x, y ∈ X . Show that there is a unique fixed point
of f .

6.8. Consider the normed space (C[0, 1], ‖ ⋅ ‖∞). Show that the set

A = {f ∈ C[0, 1] | f ([0, 1]) ⊆ [0, 1]}

is closed and bounded but not compact in (C[0, 1], ‖ ⋅ ‖∞).
6.9. Let A and B be closed and compact sets in a metric space X such that A ∩ B = 0.

Show that d(A,B) > 0.
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6.10. Let A be compact set in a metric space X . Show that there are x, y ∈ X such that
diam(A) = d(x, y).

6.11. Show that a metric space X is compact if and only if X is complete with respect to
all the topologically equivalent metrics on it.

6.12. What are compact sets in L1[0, 1]?
6.13. (Arzelà–Ascoli theorem) A family 𝒜 of maps from a metric space X to a metric

space Y is called equicontinuous at a ∈ X if for each ϵ > 0, there is δ > 0 such that
for each f ∈ 𝒜,

d(x, a) < δ ⇒ d(f (x), f (a)) < ϵ.

The family𝒜 is called equicontinuous if it equicontinuous at each point of X .
Let X be a compact metric space. Show that 𝒜 is compact in the normed space
(C𝔽(X), ‖⋅‖∞) of all continuousmaps fromX to𝔽 if and only if𝒜 is closed, bounded,
and equicontinuous.

6.14. Show that a metric space X is totally bounded if and only if its completion X̂ is
compact.

6.15. Let X be a metric space. Then a family𝒜 of nonempty sets in X is said to have the
finite intersection property if every finite subfamily of𝒜 has a nonempty intersec-
tion.
Show that a metric space X is compact if and only if every family of closed sets
with finite intersection property has a nonempty intersection.



7 Connected metric spaces

In this chapter, we study connected metric spaces and their properties.

7.1 Connectedness

Consider the real line ℝ. Suppose we wish to express the real line as a union of two
nonempty disjoint open sets U and V , that is,

ℝ = U ∪ V and U ∩ V = 0.

Choose a ∈ U and b ∈ V and suppose that a < b. Consider the set

A = {x ∈ ℝ | [a, x) ⊆ U}.

Note that a ∈ A and b is an upper bound of A. By the order completeness of ℝ, the
supremum of A exists inℝ. Let l = sup A. We can check that l is a limit point of U . Since
U is the complement of V , U is closed inℝ. This implies that l ∈ U . Also, since U is open,
there is r > 0 such that

(l − r, l + r) ⊆ U .

This implies that [l− r2 , l+
r
2 ) ⊆ U , which shows that [a, l+

r
2 ) ⊆ U . This is a contradiction.

Therefore the real line cannot be represented as a union of two nonempty disjoint open
sets.

Definition 7.1.1. A metric space X is called connected if it cannot be expressed as a
union of two nonempty disjoint open sets.

Ametric space X is called disconnected if it is not connected. Suppose ametric space
X is disconnected. Then there are nonempty disjoint open sets U and V such that

X = U ∪ V .

The pair (U ,V ) is called a disconnection of X .

Example 7.1.2. The real line is connected.

Example 7.1.3. The discrete metric space X containing more than one point is discon-
nected. For any two distinct points x and y, there is a disconnection, one containing x
and the other containing y.

Proposition 7.1.4. A metric space X is disconnected if and only if there exist two non-
empty disjoint sets A and B in X such that X = A ∪ B, (ClA) ∩ B = 0, and A ∩ (ClB) = 0.

https://doi.org/10.1515/9783111636085-007
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Proof. Suppose that X is disconnected. Then there are nonempty disjoint open sets U
and V such that X = U ∪ V . Since U and V are closed, ClU = U and ClV = V . Therefore
(ClU) ∩ V = 0, and U ∩ (ClV ) = 0.

Conversely, suppose that there exist two nonempty disjoint sets A and B in X such
that X = A ∪ B, (ClA) ∩ B = 0, and A ∩ (ClB) = 0. We claim that (A,B) is a disconnection
of X . Note that

B ⊆ X \ ClA ⊆ X \ A = B.

This implies that ClA = A. Similarly, ClB = B. This shows that (A,B) is a disconnection
of X .

Proposition 7.1.5. A metric space X is connected if and only if every continuous map f :
X → {0, 1} is constant.

Proof. Suppose that X is connected. If there is a continuous map f : X → {0, 1} that is
not constant, then the pair (f −1{0}, f −1{1}) forms a disconnection. This is a contradiction.

For the converse, suppose that X is disconnected. Then there are nonempty disjoint
open sets U and V such that X = U ∪ V . Define the map f : X → {0, 1} by f (U) = {0} and
f (V ) = {1}. Note that f is continuous and nonconstant.

Proposition 7.1.6. Let A be a connected set in a metric space X. Let A ⊆ B ⊆ ClA. Then B
is connected.

Proof. Let f : B → {0, 1} be a continuous map. Since A is connected, f is constant on A.
Suppose that f (A) = {1}. Let b ∈ B. Note that {f (b)} is open in {0, 1}. Since f is continuous
at b, there is an open set U containing b such that f (U) ⊆ {f (b)}. Note that B ⊆ ClA =
A ∪ D(A). If b ∈ A, then f (b) = 1. If b ∈ D(A), then A ∩ (U \ {b}) ̸= 0. Let a ∈ A ∩ (U \ {b}).
Then f (a) ∈ {f (b)}. This implies that f (b) = f (a) = 1. Therefore, f is constant on B. Hence
B is connected.

Proposition 7.1.7. A metric space X is connected if and only if the empty set 0 and X are
the only clopen sets of X.

Proof. Suppose that X is connected. On the contrary, suppose that U is a clopen set dif-
ferent from 0 and X . Let V = X \U . Then V is a nonempty open set disjoint from U . Since
U ∪ V = X , X is disconnected. This is a contradiction.

Conversely, suppose that X has no nonempty proper clopen set. On the contrary,
suppose that X is disconnected. Then there are nonempty disjoint open sets U and V
such that

X = U ∪ V and U ∩ V = 0.

This shows that U is a clopen set in X , a contradiction.

Proposition 7.1.8. The continuous image of a connected metric space is connected.
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Proof. Suppose that f is a surjective continuous map from a connected metric space X
to a metric space Y . On the contrary, suppose that Y is disconnected. Then there are
nonempty disjoint open sets U and V such that

Y = U ∪ V and U ∩ V = 0.

We can easily observe that the pair (f −1(U), f −1(V )) is a disconnection of X , a contradic-
tion.

Corollary 7.1.9. Let X be a connected metric space. If Y is a metric space homeomorphic
to X, then Y is connected.

A set A in ametric space X is called connected if it is connected as ametric subspace
of X . Note that each singleton set in a metric space is a connected set.

Example 7.1.10. Define the map f : ℝ → ℝ2 by f (x) = (cos x, sin x). We can check that
f is continuous. Note that the image of f is the unit circle 𝕊1. By Proposition 7.1.8, 𝕊1 is a
connected set in ℝ2.

Now we will classify the connected sets in the real line.
A set I in the real line ℝ is called an interval if for all x, y ∈ I and for every z ∈ ℝ

with x < z < y, we have z ∈ I . We leave as an exercise to classify the intervals in ℝ.

Proposition 7.1.11. A set in the real line is connected if and only if it is an interval.

Proof. Suppose that I is a connected set in the real lineℝ. Suppose that I is not an inter-
val. Then there are points a, b ∈ I with a < b such for some point c with a < c < b, c ∉ I .
Note that

I = (I ∩ (−∞, c)) ∪ (I ∩ (c,∞)).

This shows that I is disconnected, a contradiction.
Conversely, suppose that I is an interval in the real lineℝ. On the contrary, suppose

that I is disconnected. Suppose that (A,B) is a disconnection of I . Choose a ∈ A and b ∈ B
such that a < b. Consider the set

Y = {x ∈ ℝ | [a, x) ⊆ A}.

Note that Y ̸= 0 and Y is bounded above by b. Let l = sup Y . Since a ≤ l ≤ b and I is an
interval, l ∈ I . Note that l is a limit point of A. Then

l ∈ ClX A ∩ I = ClI A.

Since A is closed in I , ClI A = A. This shows that l ∈ A. Therefore l < b. Since A is open in
I , there is ϵ > 0 such that
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(l − ϵ, l + ϵ) ∩ I ⊆ A.

Since

(l − ϵ, l + ϵ) ∩ [a, b] ⊆ (l − ϵ, l + ϵ) ∩ I ⊆ A and l < b,

we get a contradiction as l is the supremum of Y .

Proposition 7.1.12 (Intermediate value theorem). Let X be a connected metric space, and
let f : X → ℝ be a continuous map. Let a, b ∈ f (X) with a < b. If c ∈ ℝ is such that
a < c < b, then there exists x ∈ X such that f (x) = c.

Proof. Note that f (X) is connected in ℝ. By Proposition 7.1.11, f (X) is an interval in ℝ.
Therefore c ∈ f (X). Hence there exists x ∈ X such that f (x) = c.

Proposition 7.1.13. Let X be a connectedmetric space containingmore than one element.
Then X is uncountable.

Proof. Let a, b ∈ X be such that a ̸= b. Define themap f : X → ℝ by f (x) = d(a, x). Then f
is continuous. Therefore f (X) is connected inℝ. By Proposition 7.1.11, f (X) is an interval
in ℝ. Note that f (a) = 0 and f (b) = d(a, b) > 0. Since f (X) is interval, [0, d(a, b)] ⊆ f (X).
Therefore f (X) is uncountable.

Suppose that A is a connected set in a metric space X such that A ⊆ U ∪ V , where U
and V are open sets with U ∩V ∩A = 0. Then A = (U ∩A)∪ (V ∩A). Since A is connected,
either U ∩ A = A, or V ∩ A = A. This implies that A ⊆ U or A ⊆ V .

Proposition 7.1.14. A function f : [a, b] → ℝ is monotonic if and only if f −1(A) is con-
nected for every connected set A in ℝ.

Proof. Suppose f is increasing. Let A be a connected set in ℝ. On the contrary, suppose
that f −1(A) is disconnected. Then there are points x, y ∈ f −1(A) and z ∉ f −1(A) such that
x < z < y. Then f (x) ≤ f (z) ≤ f (y) and f (z) ∉ A. This is a contradiction. We can similarly
discuss the decreasing case.

Conversely, suppose that f −1(A) is connected for every connected set A inℝ. On the
contrary, suppose that f is not monotonic. Then f is neither increasing not decreasing.
Since f is not increasing, there are points x, y ∈ [a, b] such that x < y and f (x) > f (y).
Since f is not decreasing, there is a point z ∈ [a, b] such that one of the following holds:
(i) z > y and f (z) > f (y);
(ii) y > z > x and f (z) > f (x);
(iii) x > z and f (x) > f (z).

If (i) or (ii) holds, then f −1(f (y),∞) is disconnected. If (iii) holds, then f −1(−∞, f (x)) is
disconnected. In all the cases, we have a contradiction.
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Proposition 7.1.15. Let {Aα | α ∈ 𝒜} be a nonempty family of connected sets in a metric
space X such that their intersection is nonempty. Then⋃α∈𝒜 Aα is connected.

Proof. LetA = ⋃α∈𝒜 Aα. On the contrary, suppose thatA is disconnected. Then there are
open sets U and V of X such that A = (U ∩ A) ∪ (V ∩ A), where U ∩ A ̸= 0, V ∩ A ̸= 0, and
U ∩ V ∩ A = 0. Since for each α ∈ 𝒜, Aα is connected and Aα ⊆ A, we have either Aα ⊆ U
or Aα ⊆ V for all α ∈ 𝒜.

Let x ∈ ⋂α∈𝒜 Aα. Since A ⊆ U ∪ V , either x ∈ U , or x ∈ V . Suppose that x ∈ U . Then
by the above observation we have Aα ⊆ U for all α ∈ 𝒜. Since U ∩ V ∩ A = 0, we have
V ∩ A = 0, a contradiction.

Proposition 7.1.16. Let X and Y be connected metric spaces. Then X × Y is connected.

Proof. Let x ∈ X . Define the map f : Y → {x} × Y by f (y) = (x, y). By Proposition 7.1.8,
{x} × Y is connected in X × Y . Similarly, X × {y} is connected in X × Y for all y ∈ Y .

Let (a, b) ∈ X × Y . For each y ∈ Y , consider the set

Ay = ({a} × Y) ∪ (X × {y}).

By Proposition 7.1.15, Ay is connected for all y ∈ Y . Since (a, b) ∈ Ay for each y ∈ Y , by
Proposition 7.1.15, X × Y = ⋃y∈Y Ay is connected.

7.2 Components in metric spaces

A maximal connected subset of a metric space X is called a component of X . Let a ∈ X .
Let𝒜 be the collection of connected sets in X containing a. Note that𝒜 is nonempty set
as {a} is a connected set. Let C be the union of all members of𝒜. By Proposition 7.1.15, C
is connected. Note that C is a component of X .

Let A be a connected set in X , and let a ∈ A. Let C be a component of X containing a.
Then by Proposition 7.1.15, A ∪ C is connected. By the maximality, A ∪ C = C. This shows
that A ⊆ C.

Let C1 and C2 be distinct components of X . Then C1∩C2 = 0; otherwise, C1∪C2 would
be connected, which is a contradiction. Thus we have observed that the collection of
components forms a partition of X .

If A is a connected set, then ClA is a connected set. This shows that if A is a compo-
nent of X , then ClA = A. Therefore A is closed.

Example 7.2.1. Each singleton is a component in the discrete metric space.

Example 7.2.2. Consider the setX = {0}∪{ 1n | n ∈ ℕ} in the real line. Then each singleton
in X is a component of X . Note that {0} is not open in X .

Example 7.2.3. Let U be an open set in the real line. Let C be a component of U . Let
a ∈ C ⊆ U . Since U is open, there is r > 0 such that B(a, r) ⊆ U . Since a ∈ B(a, r) ∩ C,
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B(a, r) ∪ C is connected. This implies that B(a, r) ∪ C = C. Therefore B(a, r) ⊆ C. This
shows that C is open in ℝ. Since each component of U contains a point of U ∩ℚ, there
are countably many components of U .

Proposition 7.2.4. If A is a connected clopen set in ametric space X, thenA is a component
of X.

Proof. Let C be a component of X such that A ⊆ C. If A ̸= C, then A ∩ C is a nonempty
proper clopen set in A. This shows that A is disconnected. This is a contradiction.

Definition 7.2.5. A metric space X is said to be totally disconnected if for each distinct
points x and y of X , there is a disconnection (A,B) of X such that x ∈ A and y ∈ B.

A set in a metric space X is totally disconnected if it is totally disconnected as a
metric subspace.

Example 7.2.6. The discrete metric space is totally disconnected.

Example 7.2.7. Let x and y be two rational numbers such that a < b. Let c be an irra-
tional number such that a < c < b. Note that the sets

A = {x ∈ ℚ | x < c} and B = {x ∈ ℚ | x > c}

form a disconnection ofℚ. Since a ∈ A and b ∈ B, the set of rational numbersℚ is totally
disconnected.

Example 7.2.8. TheCantor setC is totally disconnected. Let x and ybe twodistinct points
of C. Choose n ∈ ℕ such that 1

3n < |x−y|. Then x and y belong to different subintervals of
Cn. Let I be the closed subinterval ofCn such that x ∈ I . Then (C∩I , C\I) is a disconnection
of C such that x ∈ C ∩ I and y ∈ C \ I .

Proposition 7.2.9. The only components of a totally disconnected metric space are sin-
gletons.

Proof. Let C be a component of a totally disconnected metric space X such that C con-
tains distinct points x and y. Then there exists a disconnection (A,B) of X such that x ∈ A
and y ∈ B. Note that (C ∩ A, C ∩ B) is a disconnection of C. This is a contradiction.

Proposition 7.2.10. Let X be a metric space. Suppose that ℬ is a collection of clopen sets
of X such that for any open set U of X with x ∈ U, there is B ∈ ℬ such that x ∈ B ⊆ U.
Then X is totally disconnected.

Proof. Let x and y be distinct points of X . Let U be an open set of X such that x ∈ U and
y ∉ U . Then there is B ∈ ℬ such that x ∈ B ⊆ U . Note that (B,X \ B) is a disconnection of
X such that x ∈ B and y ∈ X \ B. Therefore X is totally disconnected.
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Remark 7.2.11. If X is a compact and totally disconnected metric space, then there is a
collection ℬ of clopen sets of X such that for any open set U of X with x ∈ U , there is
B ∈ ℬ such that x ∈ B ⊆ U . We leave the proof as an exercise.

7.3 Path connectedness

Let X be a metric space, and let x, y ∈ X . A continuous map γ : [a, b] → X such that
γ(a) = x and γ(b) = y is called a path in X from x to y.

Ametric space X is called path connected if for all points x and y of X , there is a path
from x to y. A set A in a metric space X is called path connected if it is path connected as
a metric subspace.

Example 7.3.1. For n ≥ 2, ℝn \ {0} is path connected. Let x, y ∈ ℝn \ {0}. If the origin is
not on the line in ℝn from x to y, then it is a path in ℝn \ {0} from x to y. If the origin is
on the line in ℝn from x to y, then consider a point z ∈ ℝn \ {0} that is not on this line.
Consider a line from x to z and a line from z to y. This gives a path from x to y.

Example 7.3.2. Let x, y, and z be three points in a metric space X . Let γ1 : [0, 1] → X be
a path from x to y, and let γ2 : [0, 1]→ X be a path from y to z. Define γ : [0, 1]→ X by

γ(t) = {
γ1(2t) if t ∈ [0, 12 ],
γ2(2t − 1) if t ∈ [ 12 , 1].

Then γ is a path in X from x to z.

Remark 7.3.3. By Example 7.3.2 we can observe that a metric space X is path connected
if an only if there is a point a ∈ X that can be joined by a path to any x ∈ X .

Proposition 7.3.4. A path-connected metric space is connected.

Proof. Let X be a path-connected metric space. On the contrary, suppose that X is not
connected. Let (A,B) be a disconnection of X . Let x ∈ A and y ∈ B. Since X is path
connected, there is a path γ : [a, b] → X such that γ(a) = x and γ(b) = y. Since γ
is continuous, (γ−1(A), γ−1(B)) forms a disconnection of [a, b]. This shows that [a, b] is
disconnected. This is a contradiction.

Example 7.3.5. The space ℝ \ {0} is not path connected as it is not connected.

Proposition 7.3.6. The continuous image of a path-connected metric space is path con-
nected.

Proof. Let X and Y be metric spaces such that X is path connected. Let f : X → Y be a
surjective continuous map. Let y1, y2 ∈ Y . Then there exist x1, x2 ∈ X such that f (x1) = y1
and f (x2) = y2. Since X is path connected, there is a path γ : [a, b] → X such that
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γ(a) = x1 and γ(b) = x2. Then f ∘ γ : [a, b]→ X is a path from y1 to y2. Therefore Y is path
connected.

Example 7.3.7. For n ≥ 1, consider the sphere 𝕊n. The map f : ℝn+1 \ {0} → 𝕊n defined
by f (x) = x

‖x‖ is a surjective continuous map. Since ℝ
n+1 \ {0} is path connected, 𝕊n is

path connected.

A connected metric space need not be path connected as observed in the following
example.

Example 7.3.8. Consider the set

A = {(x, y) ∈ ℝ2
󵄨󵄨󵄨󵄨󵄨󵄨 y = sin

1
x
, 0 < x ≤ 1}.

Wewill first show thatA is path connected but ClA is not path connected. Oncewe obtain
that A is path connected, we get that A is connected. This implies that ClA is connected.
Hence ClA is connected but not path connected (see Figure 7.1).

0.2 0.4 0.6 0.8 1

−1

−0.5

0.5

1

Figure 7.1: Topologist’s sine curve.

First, note that A is the continuous image of the map f : (0, 1]→ ℝ2 defined by

f (x) = (x, sin 1
x
).

Since (0, 1] is path connected, A is path connected. Observe that

ClA = A ∪ {(0, y) | −1 ≤ y ≤ 1}.
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To show that ClA is not path connected, we will show that there is no path from (0, 0) to
( 1π , 0) ∈ A.

On the contrary, suppose that there is a path γ : [0, 1] → ClA such that γ(0) = (0, 0)
and γ(1) = ( 1π , 0). Let γ(t) = (γ1(t), γ2(t)). Since γ is continuous, γ1 and γ2 are continuous.
Since γ1 is continuous, by the intermediate value theorem there is 0 < t1 < 1 such that
γ1(t) =

2
3π . Again, by the intermediate value theorem there is 0 < t2 < t1 such that

γ1(t2) =
2
5π . In thisway,we get a decreasing sequence (tn) in [0, 1] such that γ1(t) =

2
(2n+1)π .

Note that γ2(t) =
1

sin γ1(t)
. Then γ2(tn) = (−1)

n. Since (tn) is a decreasing and bounded
below sequence, tn → t in [0, 1]. Since (γ2(tn)) is not convergent, γ2 is not continuous at
t, a contradiction.

Let x, y ∈ ℝn. Then the map γ : [0, 1] → ℝn defined by γ(t) = tx + (1 − t)y is a line
segment from x to y.

A set A inℝn is called convex if any two points of A can be joined by a line segment
that is contained in A. We can observe that a convex set in path connected.

Example 7.3.9. An open ball B(a, r) in ℝn is path connected. Let x, y ∈ B(a, r) and t ∈
[0, 1]. Then

󵄩󵄩󵄩󵄩γ(t) − a
󵄩󵄩󵄩󵄩 = tx + (1 − t)y − a

= 󵄩󵄩󵄩󵄩t(x − a) + (1 − t)(y − a)
󵄩󵄩󵄩󵄩

≤ t‖x − a‖ + (1 − t)‖y − a‖

< tr + (1 − t)r

= r.

Therefore the line segment γ(t) is contained in B(a, r).

Exercises

7.1. First of all, complete whatever is left for you as exercises.
7.2. Show that the normed spaces (C[a, b], ‖ ⋅ ‖∞) and ℓ2 are connected.
7.3. Is an open ball connected in a metric space? Can you think of some sufficient con-

ditions for an open ball in a metric space be connected?
7.4. Use the intermediate value theorem to show that every real polynomial of odd

degree has a real root.
7.5. If f : 𝕊1 → ℝ is a continuous map, then show that there is a point x ∈ S1 such that

f (x) = f (−x).
7.6. Let X be a connected metric space. Then a point x ∈ X is called a cut point if X \ {x}

is disconnected.
Suppose that x is a cut point of a connected metric space X . Show that if (A,B) is a
disconnection of X \ {x}, then A ∪ {x} and B ∪ {x} are connected.
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7.7. Show that if X is a connected metric space containing at least two distinct points,
then X = A ∪ B for some nonempty connected sets A and B in X .

7.8. Show that the set A inℝ2 containing the points inℝ2 such that at least one coordi-
nate is rational is connected.

7.9. Show that if X is a countable connected metric space, then every continuous map
from X to the real line is constant.

7.10. Let f : X → Y be a surjective continuous map. Is the continuous image of a com-
ponent in X a component in Y?
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